ℹApple 将大幅加速再生材料使用,预计于 2025 年前达成电池采用 100% 再生钴制造#

ℹApple 将大幅加速再生材料使用,预计于 2025 年前达成电池采用 100% 再生钴制造# Apple今天宣布大幅加速推广其产品中使用再生材料的工作,包括2025年所有Apple设计的电池采用100%回收钴的新目标。此外,2025...

相关推荐

封面图片

苹果今日宣布一项重大的加速措施,以推进在产品中使用可再生材料的进程,包括全新的 2025 年目标:在所有 Apple 设计的电池

苹果今日宣布一项重大的加速措施,以推进在产品中使用可再生材料的进程,包括全新的 2025 年目标:在所有 Apple 设计的电池中使用 100% 再生钴。 此外,到 2025 年,Apple 设备中的磁铁将完全使用再生稀土元素,所有 Apple 设计的印刷电路板将使用 100% 再生锡焊料和 100% 再生镀金。2022 年,公司大幅推进了对重要再生金属的使用,现在 Apple 产品中超过三分之二的铝、近四分之三的稀土、超过 95% 的钨均来自 100% 再生材料。 这一快速进程让 Apple 更加接近其目标,即有朝一日所有产品仅使用循环利用材料及可再生材料,也推进了公司的 2030 年目标:让每一件产品实现碳中和。 标签: #Apple #环保 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

ℹApple 产品又要更环保了,再两年电池将 100% 使用再生钴#

ℹApple 产品又要更环保了,再两年电池将 100% 使用再生钴# 来到 2023 年,Apple 则是接续包括 iPhone、iPad 等产品的关键零件的再生材料占比逐步调整的阶段性任务,于电池、磁铁以及...

封面图片

ℹ为响应世界地球日,Apple 宣布将推进新的拆解技术并扩大使用再生材料#

ℹ为响应世界地球日,Apple 宣布将推进新的拆解技术并扩大使用再生材料# 为响应即将到来的世界地球日,Apple 宣布将推进新的拆解技术并扩大使用再生材料。苹果首次引进经认证的再生金,并增加一倍以上的再生钨、稀土...

封面图片

麻省理工学院的新型无钴有机电池材料将为电动汽车带来革命性变革

麻省理工学院的新型无钴有机电池材料将为电动汽车带来革命性变革 在一项新的研究中,研究人员表明,这种材料的生产成本远远低于含钴电池,其导电率与钴电池相似。研究人员报告说,这种新型电池的储电量也与钴电池相当,而且充电速度也比钴电池快。麻省理工学院 W.M. Keck 能源学教授 Mircea Dincă 说:"我认为这种材料可以产生很大的影响,因为它的效果非常好。它与现有技术相比已经很有竞争力,而且它可以节省大量成本,并避免目前用于电池的金属开采所带来的痛苦和环境问题。"Dincă是这项研究的资深作者,研究报告最近发表在《ACS Central Science》杂志上。23 岁的陈天阳博士和麻省理工学院前博士后哈里什-班达(Harish Banda)是论文的主要作者。其他作者包括麻省理工学院博士后王建德、麻省理工学院研究生朱利叶斯-奥本海姆(Julius Oppenheim)和博洛尼亚大学研究员亚历山德罗-弗朗切斯基(Alessandro Franceschi)。大多数电动汽车都由锂离子电池驱动,这种电池的充电原理是锂离子从一个正电极(称为阴极)流向一个负电极(称为阳极)。在大多数锂离子电池中,阴极都含有钴,这是一种具有高稳定性和高能量密度的金属。然而,钴也有很大的缺点。钴是一种稀缺金属,其价格会大幅波动,而且世界上大部分钴矿床都位于政局不稳的国家。钴的开采会造成危险的工作环境,并产生有毒废物,污染矿区周围的土地、空气和水源。"钴电池可以储存大量的能量,在性能方面也具备人们所关心的所有特性,但它们存在供应不广的问题,而且成本会随着商品价格而大幅波动。"Dincă说:"随着消费市场中电气化汽车的比例越来越高,成本肯定会越来越高。"由于钴有这样那样的缺点,因此人们进行了大量研究,试图开发替代电池材料。其中一种材料是磷酸铁锂(LFP),一些汽车制造商已开始在电动汽车中使用这种材料。尽管锂-铁-磷酸酯电池仍有实际用途,但其能量密度只有钴和镍电池的一半左右。另一种有吸引力的选择是有机材料,但迄今为止,大多数此类材料在导电性、存储容量和使用寿命方面都无法与含钴电池相媲美。由于导电率低,这类材料通常需要与聚合物等粘合剂混合,以帮助它们维持导电网络。这些粘合剂至少占整个材料的 50%,会降低电池的存储容量。大约六年前,在兰博基尼的资助下,Dincă的实验室开始进行一个项目,开发一种可为电动汽车提供动力的有机电池。在研究部分有机、部分无机的多孔材料时,Dincă和他的学生意识到,他们制造的一种完全有机的材料似乎是一种强导体。这种材料由多层 TAQ(双四氨基苯醌)组成,TAQ 是一种有机小分子,含有三个融合的六角环。这些层可以向各个方向延伸,形成类似石墨的结构。分子中含有称为醌和胺的化学基团,前者是电子库,后者有助于材料形成牢固的氢键。这些氢键使材料高度稳定,同时也非常不溶解。这种不溶性非常重要,因为它可以防止材料像某些有机电池材料那样溶解到电池电解液中,从而延长其使用寿命。Dincă 说:"有机材料降解的主要方法之一是溶解到电池电解液中,并进入电池的另一端,从而形成短路。如果使材料完全不溶解,这个过程就不会发生,因此我们可以在最少降解的情况下进行 2000 多个充电循环。Dincă对这种材料的测试表明,其导电性和存储容量与传统的含钴电池相当。此外,与现有电池相比,使用 TAQ 阴极的电池充放电速度更快,可加快电动汽车的充电速度。为了稳定有机材料并提高其附着在铜或铝制成的电池集流器上的能力,研究人员添加了纤维素和橡胶等填充材料。这些填料占整个阴极复合材料的比例不到十分之一,因此不会显著降低电池的存储容量。这些填料还能在电池充电时防止锂离子流入阴极,从而延长电池阴极的使用寿命。制造这种阴极所需的主要材料是一种醌前体和一种胺前体,它们作为商品化学品已经在市场上大量供应和生产。研究人员估计,组装这些有机电池的材料成本大约是钴电池成本的三分之一到二分之一。兰博基尼已经获得了这项技术的专利许可。Dincă 的实验室计划继续开发替代电池材料,并正在探索用钠或镁替代锂的可能性,因为钠或镁比锂更便宜、更丰富。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新材料可大幅提高太阳能电池板的效率

新材料可大幅提高太阳能电池板的效率 美国利哈伊大学的一个研究小组创造了一种材料,它可以大大提高太阳能电池板的效率。使用这种材料作为太阳能电池活性层的原型显示出 80% 的平均光电吸收率、很高的光激发载流子生成率以及前所未有的高达 190% 的外部量子效率 (EQE)这远远超过了硅基材料的肖克利-奎塞尔理论效率极限,并将光伏量子材料领域推向了新的高度。Chindeu Ekuma。资料来源:利哈伊大学物理学教授 Chinedu Ekuma 在《科学进展》(Science Advances)杂志上发表了他与利哈伊大学博士生 Srihari Kastuar 合作开发这种材料的论文。先进的材料特性这种材料的效率飞跃主要归功于其独特的"中间带态",即材料电子结构中的特定能级,使其成为太阳能转换的理想选择。这些态的能级在最佳子带间隙内,即材料能有效吸收阳光并产生电荷载流子的能量范围,约为 0.78 和 1.26 电子伏特。此外,这种材料在电磁波谱的红外线和可见光区域的高吸收率表现尤为出色。以 CuxGeSe/SnS 为活性层的薄膜太阳能电池示意图。资料来源:Ekuma 实验室/利哈伊大学在传统太阳能电池中,最大 EQE 为 100%,即每吸收一个太阳光光子,就能产生和收集一个电子。然而,过去几年中开发的一些先进材料和配置已证明能够从高能光子中产生和收集一个以上的电子,即 EQE 超过 100%。斯里哈里-卡斯图阿尔,利哈伊大学。资料来源:利哈伊大学虽然这种多重激子生成(MEG)材料尚未广泛商业化,但它们有可能大大提高太阳能发电系统的效率。在 Lehigh 开发的材料中,中间带态能够捕获传统太阳能电池通过反射和产热等方式损失的光子能量。材料开发与潜力研究人员利用"范德华间隙"(层状二维材料之间的原子级微小间隙)开发出了这种新型材料。这些间隙可以限制分子或离子,材料科学家通常利用它们来插入或"插层"其他元素,以调整材料特性。为了开发新型材料,利哈伊大学的研究人员在硒化锗(GeSe)和硫化锡(SnS)制成的二维材料层之间插入了零价铜原子。Ekuma 是计算凝聚态物理方面的专家,在对该系统进行了大量计算机建模并证明其理论前景后,他开发了这一原型作为概念验证。他说:"其快速反应和更高的效率有力地表明了铜掺杂GeSe/SnS作为一种量子材料在先进光伏应用中的使用潜力,为提高太阳能转换效率提供了一条途径。这是开发新一代高效太阳能电池的理想候选材料,将在满足全球能源需求方面发挥至关重要的作用。"虽然将新设计的量子材料整合到当前的太阳能系统中还需要进一步的研究和开发,但埃库马指出,用于制造这些材料的实验技术已经非常先进。随着时间的推移,科学家们已经掌握了将原子、离子和分子精确插入材料的方法。编译自:ScitechDaily ... PC版: 手机版:

封面图片

Altris发明基于木质材料的钠电池 将可持续发展推向新高度

Altris发明基于木质材料的钠电池 将可持续发展推向新高度 木质素是木浆制造过程中产生的一种副产品,长期以来,人们一直在研究将其用作更具可持续性的电极材料的可能性。2022 年,芬兰可再生材料公司斯道拉恩索(Stora Enso)与瑞典电池制造商 Northvolt 合作,将其专有的 Lignode 材料用于锂离子电池阳极,成为当时的头条新闻。斯道拉恩索公司将Lignode描述为一种从木质素中提炼出来的硬碳材料。通过与 Altris 合作,斯道拉恩索希望在进一步实现欧洲电池供应链本地化的同时,实现更高的可持续发展。正如我们几周前在 Natron Energy 公司投产时所看到的那样,钠离子电池不需要锂、钴和镍等稀有矿物质,而是依靠丰富的钠,这种钠可以就地取材,无需进行有害的开采。木质素原料被提炼成硬碳粉,用于制造电池阳极的电极片Altris 和斯道拉恩索将阳极制造中通常使用的石墨换成了源自天然副产品的 Lignode,从而进一步减少了对中国进口(欧盟 90% 以上的石墨来自中国)的依赖,确保了欧盟本地供应链的安全。斯道拉恩索公司还表示,Lignode阳极有望实现更快的充电和放电速度。斯道拉恩索公司自称是世界上最大的私有森林之一,拥有和租赁的土地面积超过 500 万英亩(200 万公顷)。该公司在芬兰科特卡(Kotka)的工厂加工木浆已有 80 多年历史,自 2015 年起开始工业化提取木质素。该公司于 2021 年开始试生产 Lignode,目前正在努力扩大商业规模。该公司指出,一棵树有 20% 至 30% 由木质素组成,因此木质素的供应量非常大,而且很容易通过可持续森林管理实践加以替代,该公司甚至表示,包含木质素的 Altris 钠离子电池有可能成为世界上最具可持续性的电池。斯道拉恩索公司高级副总裁尤索-孔蒂宁(Juuso Konttinen)在本周的联合声明中表示:"生物基材料是提高电池电池可持续性的关键。Lignode 有潜力成为世界上最具可持续性的负极材料,与 Altris 的合作完全符合我们的共同承诺,即支持更具可持续性的电气化目标。"斯道拉恩索公司表示,它是世界上最大的私人森林所有者之一,为木质素的采购提供了大量的原材料供应在电池的另一侧,Altris 使用普鲁士白制造阴极,这种材料由丰富、廉价、无冲突的材料制成,如铁、氮、钠和碳。与 Natron 的普鲁士蓝一样,它也不含锂、钴等稀有、有问题的矿物质。"世界上最可持续发展"的钠电池采用木浆阳极,听起来是不是好得不像真的?现在看来的确如此。合作声明上的墨迹还未干,Altris 还没有开始商业化生产,它仍然称自己为钠离子电池开发商和原型制造商。去年,Altris 展示了一种商业规模的电池,其能量密度为 160 瓦时/千克,与当今电动汽车使用的磷酸铁锂(LFP)电池相当。该电池是与 Northvolt 合作开发的。Altris 首席执行官比约恩-莫里德(Björn Mårlid)当时表示,公司未来的目标是达到 200 瓦时/千克。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人