积金易明年第二季启用 2025年完成转移逾一万亿资产

None

相关推荐

封面图片

积金局称「先细后大」将资料转移到积金易平台 料明年底完成转移

积金局称「先细后大」将资料转移到积金易平台 料明年底完成转移 「积金易」平台将于6月26日投入运作,预计18个月内可将全部24个强积金计划转移到平台。积金局主席刘麦嘉轩解释,由于持份者资料很多,涉及470万成员、1100万户口,所以希望以最安全方法、「先细后大」逐步将资料转移到平台,确保顺畅,避免混乱。她在本台节目《千禧年代》说,预计明年底会完成转移,之后「积金易」将全面运作。刘麦嘉轩表示,积金易户口将「跟你一世」,打工仔无论转多少次工,有几多个受托计划,登入一个户口就可看到所有资料。打工仔登入平台,透过「半自由行」转移自选强积金计划,只要按几个制指示,处理时间会由现时两三个星期减至一个星期。刘麦嘉轩指出,即使有打工仔不懂得登入平台做电子登记,雇员强积金资料仍会自动转移,只是不做电子登记,而是用传统方式即纸张,交去「积金易」平台公司,而并非交到受托人。雇员是否有做电子登记,也会通过「积金易」平台管理投资计划。 2024-05-03 09:09:28

封面图片

积金局:目标明年底前全部1100万个帐户转移至「积金易」平台

积金局:目标明年底前全部1100万个帐户转移至「积金易」平台 积金局主席刘麦嘉轩表示,「积金易」平台已准备就绪,预计首间受托人在今年6月可将旗下强积金计划帐户资料,转移至平台。由于强积金数目庞大,而且属敏感资料,因此采用严格的标准安排资料转移,会按受托人管理强积金计划的资产规模,先小后大方式,将资料由受托人系统分阶段转移至平台,确保安全稳妥。局方的目标是在2025年底前完成全部1100万个帐户转移,正进行营运前各项筹备工作。刘麦嘉轩在立法会财经事务委员会会议上表示,已为平台负载量进行压力测试。她说,网络及资讯安全是平台的重中之重,已根据政府及国际做法,实施多重保安措施,加密个人私隐资料,并已汲取其他公营机构近期的经验。当平台开始运作后,会有24小时的系统监测。刘麦嘉轩回应议员提问时强调,行政长官已宣布明年5月1日实施强积金对冲,而积金易平台运作与取消对冲,两者并无直接关连。 2024-03-18 10:43:45 (1)

封面图片

积金局︰积金易平台料第二季推出可降低行政费

积金局︰积金易平台料第二季推出可降低行政费 将提供一站式电子平台服务的积金易平台,预计今年第二季推出,积金局行政总监郑恩赐接受访问时表示,预计强积金计划成员日后要缴付的行政费将下调。对于强积金回报,郑恩赐表示,绝不认同外界指强积金必定亏蚀,认为是视乎计划成员的基金选择,而俗称「懒人基金」的「预设投资策略」推出至今近7年,该基金并没有亏蚀。 2024-02-13 18:19:13

封面图片

一万亿晶体管GPU将到来 台积电董事长撰文解读

一万亿晶体管GPU将到来 台积电董事长撰文解读 值得一提的是,本文署名作者MARK LIU(刘德音)和H.-S. PHILIP WONG,其中刘德音是台积电董事长。H.-S Philip Wong则是斯坦福大学工程学院教授、台积电首席科学家。在这里,我们将此文翻译出来,以飨读者。以下为文章正文:1997 年,IBM 深蓝超级计算机击败了国际象棋世界冠军Garry Kasparov。这是超级计算机技术的突破性演示,也是对高性能计算有一天可能超越人类智能水平的首次展示。在接下来的10年里,我们开始将人工智能用于许多实际任务,例如面部识别、语言翻译以及推荐电影和商品。再过十五年,人工智能已经发展到可以“合成知识”(synthesize knowledge)的地步。生成式人工智能,如ChatGPT和Stable Diffusion,可以创作诗歌、创作艺术品、诊断疾病、编写总结报告和计算机代码,甚至可以设计与人类制造的集成电路相媲美的集成电路。人工智能成为所有人类事业的数字助手,面临着巨大的机遇。ChatGPT是人工智能如何使高性能计算的使用民主化、为社会中的每个人带来好处的一个很好的例子。所有这些奇妙的人工智能应用都归功于三个因素:高效机器学习算法的创新、训练神经网络的大量数据的可用性,以及通过半导体技术的进步实现节能计算的进步。尽管它无处不在,但对生成式人工智能革命的最后贡献却没有得到应有的认可。在过去的三十年里,人工智能的重大里程碑都是由当时领先的半导体技术实现的,没有它就不可能实现。Deep Blue 采用 0.6 微米和 0.35 微米节点芯片制造技术的混合实现;赢得 ImageNet 竞赛的深度神经网络并开启了当前机器学习时代的设备使了用 40 纳米技术打造的芯片;AlphaGo 使用 28 纳米技术征服了围棋游戏;ChatGPT 的初始版本是在采用 5 纳米技术构建的计算机上进行训练的。;ChatGPT 的最新版本由使用更先进的4 纳米技术的服务器提供支持。所涉及的计算机系统的每一层,从软件和算法到架构、电路设计和设备技术,都充当人工智能性能的乘数。但可以公平地说,基础晶体管器件技术推动了上面各层的进步。如果人工智能革命要以目前的速度继续下去,它将需要半导体行业做出更多贡献。十年内,它将需要一个 1 万亿晶体管的 GPU,也就是说,GPU 的设备数量是当今典型设备数量的 10 倍。AI 模型大小的不断增长,让人工智能训练所需的计算和内存访问在过去五年中增加了几个数量级。例如,训练GPT-3需要相当于一整天每秒超过 50 亿次的计算操作(即 5,000 petaflops /天),以及 3 万亿字节 (3 TB) 的内存容量。新的生成式人工智能应用程序所需的计算能力和内存访问都在持续快速增长。我们现在需要回答一个紧迫的问题:半导体技术如何跟上步伐?从集成器件到集成小芯片自集成电路发明以来,半导体技术一直致力于缩小特征尺寸,以便我们可以将更多晶体管塞进缩略图大小的芯片中。如今,集成度已经上升了一个层次;我们正在超越 2D 缩放进入3D 系统集成。我们现在正在将许多芯片组合成一个紧密集成、大规模互连的系统。这是半导体技术集成的范式转变。在人工智能时代,系统的能力与系统中集成的晶体管数量成正比。主要限制之一是光刻芯片制造工具被设计用于制造不超过约 800 平方毫米的 IC,即所谓的光罩限制(reticle limit)。但我们现在可以将集成系统的尺寸扩展到光刻掩模版极限之外。通过将多个芯片连接到更大的中介层(一块内置互连的硅片)上,我们可以集成一个系统,该系统包含的设备数量比单个芯片上可能包含的设备数量要多得多。例如,台积电的CoWoS(chip-on-wafer-on-substrate )技术就可以容纳多达六个掩模版区域的计算芯片,以及十几个高带宽内存(HBM)芯片。CoWoS是台积电的硅晶圆上芯片先进封装技术,目前已在产品中得到应用。示例包括 NVIDIA Ampere 和 Hopper GPU。当中每一个都由一个 GPU 芯片和六个高带宽内存立方体组成,全部位于硅中介层上。计算 GPU 芯片的尺寸大约是芯片制造工具当前允许的尺寸。Ampere有540亿个晶体管,Hopper有800亿个。从 7 纳米技术到更密集的 4 纳米技术的转变使得在基本相同的面积上封装的晶体管数量增加了 50%。Ampere 和 Hopper 是当今大型语言模型 ( LLM ) 训练的主力。训练 ChatGPT 需要数万个这样的处理器。HBM 是对 AI 日益重要的另一项关键半导体技术的一个例子:通过将芯片堆叠在一起来集成系统的能力,我们在台积电称之为SoIC (system-on-integrated-chips) 。HBM 由控制逻辑 IC顶部的一堆垂直互连的 DRAM 芯片组成。它使用称为硅通孔 (TSV) 的垂直互连来让信号通过每个芯片和焊料凸点以形成存储芯片之间的连接。如今,高性能 GPU广泛使用 HBM 。展望未来,3D SoIC 技术可以为当今的传统 HBM 技术提供“无凸块替代方案”(bumpless alternative),在堆叠芯片之间提供更密集的垂直互连。最近的进展表明,HBM 测试结构采用混合键合技术堆叠了 12 层芯片,这种铜对铜连接的密度高于焊料凸块所能提供的密度。该存储系统在低温下粘合在较大的基础逻辑芯片之上,总厚度仅为 600 µm。对于由大量运行大型人工智能模型的芯片组成的高性能计算系统,高速有线通信可能会很快限制计算速度。如今,光学互连已被用于连接数据中心的服务器机架。我们很快就会需要基于硅光子学的光学接口,并与 GPU 和 CPU 封装在一起。这将允许扩大能源效率和面积效率的带宽,以实现直接的光学 GPU 到 GPU 通信,这样数百台服务器就可以充当具有统一内存的单个巨型 GPU。由于人工智能应用的需求,硅光子将成为半导体行业最重要的使能技术之一。迈向万亿晶体管 GPU如前所述,用于 AI 训练的典型 GPU 芯片已经达到了标线区域极限(reticle field limit)。他们的晶体管数量约为1000亿个。晶体管数量增加趋势的持续将需要多个芯片通过 2.5D 或 3D 集成互连来执行计算。通过 CoWoS 或 SoIC 以及相关的先进封装技术集成多个芯片,可以使每个系统的晶体管总数比压缩到单个芯片中的晶体管总数大得多。如AMD MI 300A 就是采用这样的技术制造的。AMD MI300A 加速处理器单元不仅利用了CoWoS,还利用了台积电的 3D 技术SoIC。MI300A结合了 GPU 和 CPU内核,旨在处理最大的人工智能工作负载。GPU为AI执行密集的矩阵乘法运算,而CPU控制整个系统的运算,高带宽存储器(HBM)统一为两者服务。采用 5 纳米技术构建的 9 个计算芯片堆叠在 4 个 6 纳米技术基础芯片之上,这些芯片专用于缓存和 I/O 流量。基础芯片和 HBM 位于硅中介层之上。处理器的计算部分由 1500 亿个晶体管组成。我们预测,十年内,多芯片 GPU 将拥有超过 1 万亿个晶体管。我们需要在 3D 堆栈中将所有这些小芯片连接在一起,但幸运的是,业界已经能够快速缩小垂直互连的间距,从而增加连接密度。而且还有足够的空间容纳更多。我们认为互连密度没有理由不能增长一个数量级,甚至更高。GPU 的节能性能趋势那么,所有这些创新的硬件技术如何提高系统的性能呢?如果我们观察一个称为节能性能的指标的稳步改进,我们就可以看到服务器 GPU 中已经存在的趋势。EEP 是系统能源效率和速度(the energy efficiency and speed of a system)的综合衡量标准。过去 15 年来,半导体行业的能效性能每两年就提高了三倍左右。我们相信这一趋势将以历史速度持续下去。它将受到多方面创新的推动,包括新材料、器件和集成技术、极紫外(EUV)光刻、电路设计、系统架构设计以及所有这些技术元素的共同优化等。特别是,EEP 的增加将通过我们在此讨论的... PC版: 手机版:

封面图片

美情报总监称如果中共犯台台积电受损全球每年损失一万亿美元

封面图片

香港 2023 年管理资产规模逾 31 万亿港元

香港 2023 年管理资产规模逾 31 万亿港元 香港特区政府财政司司长陈茂波 7 日发表网志表示,香港金融市场经历挑战和多重压力后,2023 年在资产及财富管理业务方面仍展示出强劲的韧性,有信心良好势头将会持续,相关业务必处于全球领先位置。陈茂波介绍,2023 年,香港管理的资产规模在 31 万亿港元以上,增长约 2.1%,其中约三分之二的资产来自香港以外的投资者;私募基金管理的资金规模超过 17000 亿港元,香港继续稳坐亚洲区内第二大私募基金管理中心的地位;受惠于私人银行和私人财富管理业务的强劲表现,净资金流入同比增长超过 3.4 倍;在香港注册成立基金的资金净流入超过 870 亿港元,同比增加超过 90%。“这些数字已充分说明,此前一些对资金离开香港的担忧是不必要的。” 陈茂波说,“上述数字也反映出尽管国际地缘政治风云变幻,不同地方的投资者对内地和对香港市场的前景依然有所憧憬。”(新华社)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人