从今天起,苹果在自家产品中将拒绝使用任何皮革制品。

从今天起,苹果在自家产品中将拒绝使用任何皮革制品。 将会引入 FineWoven 纤维,68% 回收物,引入新配色。 与 HERMES 合作才用了两种 wovan,一种 knitted,和一种别的表带。 新表盘 和 NIKE 合作,使用回收材料,新的 NIKE Sport Band 将使用回收材料,Sport Loop,回收羊毛。 新表盘

相关推荐

封面图片

科学家发明几乎100%可回收的电路板 在拆卸时会变成果冻状

科学家发明几乎100%可回收的电路板 在拆卸时会变成果冻状 从左到右依次是玻璃纤维基印刷电路板、采集的玻璃纤维片、从电路板上剥离的胶状玻璃纤维聚合物块以及采集的电子元件由于这种基底材料不容易分解,因此回收电子元件再利用需要耗费大量人力和时间。有时,为了回收电子元件,玻璃纤维会被烧掉,但这一过程并不环保,而且可能会损坏所回收的元件。这就是试验性新 PCB 的用武之地。它由华盛顿大学的科学家们创造,用一种被称为玻璃聚合物的聚合物取代了玻璃纤维中的树脂。只要印刷电路板还在使用,这种玻璃聚合物就能保持强度、刚度和非导电性,使基板的功能与传统玻璃纤维基板无异。华盛顿大学机械工程博士后学者 Agni K.华盛顿大学机械工程博士后学者比斯瓦尔使用热压机压合玻璃纤维印刷电路板 马克-斯通/华盛顿大学一旦这种"vPCB"(玻璃纤维印刷电路板)达到使用年限,就会被送往回收设施,并浸入沸点相对较低的有机溶剂中。当溶剂沸腾时,会使玻璃纤维膨胀并变成胶状。所有的玻璃纤维和电子元件(完全没有损坏)都可以很容易地取出来重新使用。此外,实验室实验还表明,98% 的玻璃聚合物本身可以重复使用,91% 的溶剂也可以重复使用。重要的是,vPCB 可以在现有设施中生产,而且可以反复回收利用。事实上,科学家们估计,与传统的多氯联苯相比,使用回收的 vPCB 可使全球变暖潜能值降低 48%,致癌物质排放量减少 81%。研究论文的共同资深作者 Vikram Iyer 副教授说:"在电子垃圾的质量和体积中,PCB 占了相当大的一部分。它们的构造具有防火和防化学腐蚀的特性,这使它们非常坚固耐用。但这也使它们基本上无法回收利用。在这里,我们创造了一种新的材料配方,其电气性能可与传统的多氯联苯媲美,同时还创造了一种可反复回收利用的工艺。"该论文最近发表在《自然-可持续性》杂志上。此外,有趣的是,同一批科学家还曾在一种更易于修复和回收的碳纤维中使用过玻璃纤维。 ... PC版: 手机版:

封面图片

一种新型电化学方法可从废钢中提取铜等污染物

一种新型电化学方法可从废钢中提取铜等污染物 它引入了一种用于电精炼的创新型氧化硫电解液,这是一种从钢水中去除铜和碳杂质的替代方法。该工艺还会产生液态铁和硫作为副产品。阿齐米说:"我们的研究是首次报道用电化学方法去除钢中的铜,并将杂质降至合金水平以下。"目前,仅有 25% 的钢材来自回收材料。但随着世界各国政府努力实现净零排放目标,预计未来二十年全球对绿色钢材的需求将不断增长。钢铁是通过铁矿石与焦炭(煤的一种制备形式)反应生成碳源,并将氧气吹入生成的金属中而制成的。目前的标准工艺每生产一吨钢就会产生近两吨二氧化碳,使钢铁生产成为制造业中碳排放量最高的行业之一。从左到右:多伦多大学博士生 Jaesuk (Jay) Paeng 站在 Gisele Azimi 教授身边,手里拿着团队新设计的电化学电池,该电池可以承受高达 1600 摄氏度的高温,同时使用基于矿渣的电解液电化学去除钢铁中的污染物。图片来源:Safa Jinje / 多伦多大学工程学院传统的钢铁回收方法使用电弧炉熔化废金属。由于在熔化前很难从废金属中物理分离出铜材料,因此回收的钢铁产品中也存在铜元素。阿兹米说:"二次炼钢的主要问题是回收的废钢可能受到其他元素的污染,包括铜。随着要回收的废金属增多,铜的浓度也会增加,当铜在最终钢产品中的重量百分比超过 0.1%(wt%)时,就会对钢的性能产生不利影响"。采用传统的电弧炉炼钢法无法从钢水废料中去除铜,因此限制了二级钢材市场生产低质量钢材产品,如建筑行业使用的钢筋。Paeng 说:"我们的方法可以将二级钢市场扩展到不同的行业。它有潜力用来制造更高级的产品,如汽车行业使用的镀锌冷轧卷,或运输行业使用的深冲钢板。"为了将铁中的铜去除到 0.1 wt% 以下,研究小组必须首先设计出一种能承受高达 1600摄氏度高温的电化学电池。在电池内部,电流通过一种新型的氧化硫电解质在负极(阴极)和正极(阳极)之间流动,这种电解质是用炉渣设计的,炉渣是炼钢产生的一种废料,通常被丢弃在水泥厂或垃圾填埋场。"我们将含有铜杂质的污染铁作为电化学电池的阳极,"阿兹米说。"然后,我们用电源施加电动势,也就是电压,迫使铜与电解液发生反应。电解液的作用是在电池通电时将铜从铁中分离出来。当我们在电池的一端通电时,就会迫使铜与电解液发生反应,从而产生铁。在电池的另一端,我们同时产生新的铁"。Azimi的实验室与Tenova Goodfellow公司合作,后者是一家为金属和采矿业提供先进技术、产品和服务的全球供应商。展望未来,研究小组希望通过电解精炼工艺去除钢中的其他污染物,包括锡。"钢铁是工业中使用最广泛的金属,我认为其年产量高达 19 亿吨,"阿兹米说。"我们的方法潜力巨大,可以为炼钢行业提供一种实用且易于实施的钢材回收方法,以满足全球对高等级钢材的更多需求"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

氢化镁:可持续能源存储的关键?

氢化镁:可持续能源存储的关键? 研究人员发现了氢化镁作为储氢解决方案失败的原因,并确定了前进的道路,有可能彻底改变氢在能源应用中的使用。在杜本多夫(Dübendorf)的超高真空室中利用电子能谱对纯镁层中氢的迁移进行了研究。图片来源:Empa / AB / IFJ PAN长期以来,氢一直被视为未来的能源载体。然而,在氢成为能源领域的现实之前,必须开发出高效的氢储存方法。如果选择的材料能够以较低的能源成本首先将氢注入其中,然后根据需要进行回收,最好是在与我们日常生活环境相似的条件下进行回收,那么这种材料似乎就是最佳的解决方案。镁似乎是一种很有希望的储氢材料。然而,将其转化为氢化镁需要一种适当高效的催化剂,而这种催化剂尚未找到。由位于杜本多夫的瑞士联邦材料科学与技术实验室(Empa)、苏黎世大学化学系和克拉科夫波兰科学院核物理研究所(IFJ PAN)的科学家组成的研究小组的工作表明,迄今为止多年失败的原因在于对氢气注入过程中镁发生的现象了解不全面。理论与实验启示将氢气作为一种能源加以利用的主要障碍是储存氢气的困难。在目前仍然罕见的氢动力汽车中,氢气是在大约 700 个大气压的压力下压缩储存的。这既不是最便宜的方法,也不是最安全的方法,而且与效率关系不大:一立方米中只有 45 千克氢。如果事先对氢气进行冷凝,同样的体积可以储存 70 千克氢气。遗憾的是,液化过程需要大量能源,而且在整个储存过程中必须保持约 20 开尔文的极低温度。一种替代方法是使用合适的材料,例如氢化镁,它可以在一立方米中储存 106 千克氢。镁晶格中氢(蓝色)分布的可视化:镁和镁氢化物区域明显分开。电离后的镁原子以米色标出。资料来源:IFJ PAN / ZŁ氢化镁是测试储氢能力的材料中最简单的一种。其含量可达 7.6%(按重量计)。因此,氢化镁装置相当重,主要适用于固定应用。不过,值得注意的是,氢化镁是一种非常安全的物质,可以毫无风险地储存在地下室等地方,而且镁本身也是一种容易获得的廉价金属。深入了解氢化镁的局限性理论物理学家 Zbigniew Lodziana 教授(IFJ PAN)说:"将氢融入镁中的研究已经进行了几十年,但还没有找到可以广泛应用的解决方案。问题的根源之一是氢元素本身。这种元素可以有效地穿透镁的晶体结构,但只能以单个原子的形式存在。要想从典型的分子氢中获得氢,就需要一种催化剂,其效率足以使氢在材料中的迁移过程快速且能量可行。因此,每个人都在寻找一种符合上述条件的催化剂,但遗憾的是,没有取得多少成功。今天,我们终于知道为什么这些尝试注定要失败了。"Lodziana 教授为镁与氢原子接触时发生的热力学和电子过程建立了一个新模型。该模型预测,在氢原子迁移过程中,材料中会形成局部热力学稳定的氢化镁簇。在金属镁及其氢化物的边界,材料的电子结构会发生变化,而正是这些变化在降低氢离子的迁移率方面发挥了重要作用。换句话说,镁氢化物形成的动力学主要是由其与镁的界面现象决定的。迄今为止,在寻找高效催化剂的过程中还没有考虑到这种影响。Lodziana 教授的理论研究是对瑞士杜本多夫实验室所做实验的补充。在这里,我们在超高真空室中研究了溅射到钯上的纯镁层中原子氢的迁移。测量仪器能够记录所研究样品的几个外原子层的状态变化,这些变化是由新化合物的形成和材料电子结构的相关转变引起的。IFJ PAN 研究人员提出的模型使我们能够充分理解实验结果。瑞士-波兰物理学家小组的研究成果不仅为寻找氢化镁的最佳催化剂铺平了道路,还解释了为什么以前发现的一些催化剂比预期的效率更高。"有很多证据表明,镁及其化合物的储氢技术之所以没有取得重大进展,仅仅是因为我们对这些材料中的氢传输过程了解不全面。几十年来,我们一直在寻找更好的催化剂,但却没有找到我们应该寻找的催化剂。现在,新的理论和实验结果让我们有可能再次乐观地思考如何进一步改进将氢引入镁中的方法,"Lodziana 教授总结道。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

一种新的掺杂方法利用空气和光来增强有机半导体的导电性

一种新的掺杂方法利用空气和光来增强有机半导体的导电性 这种新方法是将导电塑料浸入一种特殊的盐溶液(一种光催化剂)中,然后用光对其进行短时间的照射,从而得到一种掺杂 p 的导电塑料,在这种塑料中,唯一消耗的物质是空气中的氧气。资料来源:Thor Balkhed我们相信,这种方法将极大地影响我们掺杂有机半导体的方式。林雪平大学副教授西蒙娜-法比亚诺(Simone Fabiano)说:"所有元件都价格低廉、易于获得,而且可能对环境无害,这是未来可持续电子产品的先决条件。"基于导电塑料而非硅的半导体具有许多潜在应用。其中,有机半导体可用于数字显示器、太阳能电池、发光二极管、传感器、植入物和能源储存。林雪平大学有机电子实验室的研究人员杨志远、Simone Fabiano 和 Qingqing Wang。图片来源:Thor Balkhed为了增强导电性和改变半导体特性,通常会引入所谓的掺杂剂。这些添加剂可促进半导体材料内部电荷的移动,并可定制为诱导正电荷(p-掺杂)或负电荷(n-掺杂)。目前最常用的掺杂剂通常反应性很强(不稳定)、价格昂贵、制造难度大,或者三者兼而有之。现在,林雪平大学的研究人员开发出了一种可在室温下进行的掺杂方法,将氧等低效掺杂剂作为主要掺杂剂,并通过光激活掺杂过程。"我们的方法受到了大自然的启发,因为它与光合作用等有许多相似之处。在我们的方法中,光能激活光催化剂,然后促进电子从通常低效的掺杂剂转移到有机半导体材料,"Simone Fabiano 说。这种新方法是将导电塑料浸入一种特殊的盐溶液(一种光催化剂)中,然后用光照短时间。光照时间的长短决定了材料的掺杂程度。之后,将溶液回收以供将来使用,留下的是掺杂 p 的导电塑料,其中唯一消耗的物质是空气中的氧气。林雪平大学高级副教授 Simone Fabiano。图片来源:Thor Balkhed之所以能够做到这一点,是因为光催化剂充当了"电子穿梭机"的角色,在牺牲性弱氧化剂或还原剂存在的情况下,向材料吸收电子或捐献电子。这在化学中很常见,但以前从未在有机电子学中使用过。"我们还可以在同一反应中结合 p 掺杂和 n 掺杂,这是非常独特的。这简化了电子设备的生产,尤其是那些需要同时掺杂 p 和 n 的半导体的设备,如热电发生器。"Simone Fabiano 说:"所有部件都可以同时制造,同时掺杂,而不是一个一个地掺杂,这使得工艺更具可扩展性。"与传统半导体相比,掺杂有机半导体具有更好的导电性,而且这种工艺可以按比例放大。有机电子实验室的西蒙娜-法比亚诺(Simone Fabiano)及其研究小组于2024年早些时候展示了如何利用水等环保溶剂加工导电塑料;这是他们的下一步研究。沃伦贝格学院研究员西蒙娜-法比亚诺(Simone Fabiano)说:"我们正在努力全面了解其背后的机理以及还有哪些潜在的应用领域。但这是一种非常有前景的方法,表明光催化掺杂是有机电子学的新基石。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

对俄罗斯的制裁 制裁时代来了。外国公司纷纷从俄罗斯撤出,国际巨头拒绝供应其产品,使生产俄罗斯国内同等产品的问题比以往任何时候都更

对俄罗斯的制裁 制裁时代来了。外国公司纷纷从俄罗斯撤出,国际巨头拒绝供应其产品,使生产俄罗斯国内同等产品的问题比以往任何时候都更加尖锐。这是一个历史性的十字路口。 最近两天俄罗斯国内相关讨论开始飞增,其中最有趣的部分就是,引起了阿纳托利·丘拜斯执政时期的疑问。 下面简要介绍下这一背景。 丘拜斯是俄罗斯政治人物、商人,前副总理、“俄罗斯资本主义之父”,曾在1990年代初期叶利钦政府中担任要职,负责俄罗斯的私有化,对苏联解体后向俄罗斯引入市场经济和私有制产生过重要影响。 RUSNANO集团是在 “总统倡议框架” 下成立的俄罗斯创新发展机构,被称为“纳米技术产业发展战略”。RUSNANO集团的使命是在俄罗斯创建具有竞争力的基于纳米技术的高科技产业。2011年,RUSNANO承诺进行IPO,并吸引欧洲复兴开发银行的股东。莫斯科政府没有为丘拜斯设定这样的目标,于是他决定自己来做。 自欧洲复兴开发银行以来,对国防的投资是不受鼓励的。这里应该是西方批准的生态学和可再生能源、医学、信息技术、所谓的 “智能城市” 和其他东西的项目,人们可以没完没了地谈论这些项目,而且可以谈很长时间,但却不提出任何结果。 顺便说,没有任何证据表明欧洲复兴开发银行有任何意向成为RUSNANO的股东;与此同时,大约3亿卢布被用于 “让欧洲复兴开发银行进入” 的所谓尽职调查。这些资金被支付给各种顾问,并大多被兑现了。 2014年,俄罗斯占领克里米亚和随后的制裁,结束了RUSNANO的IPO问题和欧洲复兴开发银行的“问题”。换句话说,私有化计划被毁了,是普京自己造成的。 此外,丘拜斯还有一个新的想法:“为了避免被制裁,我们不会投资于军事” 等等。据报道,在私密会议上,普京被告知了 “巨大的潜力”,“通往欧洲的窗口”,等等 .... 还没有充分证实。 俄罗斯巨富米哈伊尔·普罗霍罗夫控股的 Onexim 集团旗下子公司“Optogan”在圣彼得堡的工厂生产的军民两用二极管的项目收到了丘拜斯本人的非正式禁令。RUSNANO 故意让超级导线(纳电子学)、锗的生产和应用、机床和特殊工具的生产、电子元件开发等项目的资金保持不足。 ElVIS-NeoTech 为开发芯片投资了20多亿卢布(该芯片也有军事用途)。结果是:没有什么芯片,钱被偷走了,项目经理 Oleg Kiselev(Gedalia Vakser)和 Dmitry Pimkin 住在国外,由于 Asnis & Partners 和 RUSNANO 的努力,甚至没有被刑事调查。 ROSNANO 的决策、选择、批准和项目管理、激励和奖励制度,是以这样一种方式建立的,即:两用技术和进口替代项目没有生存机会。 ​​#Ukraine #Russia​​ #Sanctions

封面图片

如果在城市的楼顶和全球的无人地区大面积铺设反光材料,能否减缓全球变暖和热岛效应?

如果在城市的楼顶和全球的无人地区大面积铺设反光材料,能否减缓全球变暖和热岛效应? 赵泠的回答 能。在地球上大面积铺设反光材料是地球工程的一种。在当前技术水平与工业生产能力下,这种工程可期待的规模有限、效果量小,但进行小规模工程实践的难度相对低,天气炎热的大城市可以先安排上。多种地球工程手段可以并用来放大效果。 驱动地表气候的能量来自太阳辐射,一部分太阳辐射可以被在平流层散布的粉尘和二氧化硫、在地面铺设的反光镜、建筑物上的反光涂料、低空大气中(行星边界层以内)的微塑料颗粒之类稀松平常的手段反射回太空。 大气中的二氧化碳可以被散布在陆地上的石粉大量吸收,可以被人工施肥催生的海洋浮游生物大量汲取并送进南冰洋底,可以被液态铀核反应堆的热量分解。 如果极端恶劣天气频发,碳中和、碳捕集措施都不足以将其抑制,阻碍地球工程的各种思想都将溃退,人们将不得不多管齐下去处理太阳辐射。 届时,一部分环保人士将因为在过去十几年间反对地球工程而处于十分尴尬的境地。 可以参照: 如何看待全球1.4万名科学家的联名警告:地球的「行星生命体征」正在恶化,「气候临界点」将很快被冲破? 一些与反光相关的地球工程技术: 辐射冷却全世界对空调和冰箱的需求不断增长,估计到 2050 年世界上制冷设备的规模将是 2020 年的 3 倍,泄漏的制冷剂和用来给制冷设备供能的化石燃料将成为重大的温室气体来源并破坏臭氧层,需要新的制冷方案。 加利福尼亚大学洛杉矶分校的材料科学家测试了大规模的热辐射降温。 过去数百年里,北非、中东、印度的荒漠地区有许多人已经小规模使用过这技术的原型:日落时,你将水倒入用芦苇隔热的陶瓷托盘。晴朗的夜里,水将热量朝太空放射。早晨,你就得到了非常凉的水,甚至是冰。 现在,科学家使用含铜和银的纳米技术薄膜将热辐射最大化,该薄膜对光的反射率超过 99%,其红外辐射的波长适合直接穿透地球大气。即使在正午的阳光下,这东西也可将包裹的物体的温度降低到比气温冷 10 摄氏度。这可以在没有电力和燃料供应的情况下冷却火箭、管道、各种面板和建筑物。其条件就是对准晴朗的天空。这种纳米材料也可加入涂料,粉刷到建筑物上。 辐射冷却可以产生温度梯度并拿来发电就像挪威在森林里测试过的“星光发电机”和斯坦福大学的研究团队测试过的热传导发电机与辐射冷却模块那样。斯坦福大学的装置安装在民宅房顶后在夜间每平方米可以产生 2.2 瓦电功率,能量从周围的空气里取得,废热辐射向太空。冰川隔热毯二十世纪八十年代起,全球范围内的冰川消融速度明显加快,只有少数冰川还在前进。冰川融化造成的泥石流和河流水量变动可能对附近的村庄、水电站和下游地区造成威胁。中国、尼泊尔、不丹、巴塔哥尼亚高原、安第斯山脉都可能发生冰川湖决口洪水。 瑞士科学家早已在罗纳河冰川、格胜河冰川上利用白色羊毛毯遮挡和反射太阳辐射,实验证明可以缓解 60% 到 70% 的季节性冰川消融。 2020 年 8 月,中国科学院研究团队给位于青藏高原东缘的达古冰川盖上了一层面积约 500 平方米的白色反光隔热毯,试验用人工手段减缓冰川消融。10 月 17 日,现场考察显示,白色反光隔热毯覆盖区域与周围相比,冰川消融厚度减少约 1 米,初步估计能减少 70% 左右的消融量。 我国试验的反光隔热毯的材料是涤纶、腈纶、锦纶等高分子聚合物的合成纤维,技术成熟,投入不高,可反复回收再利用,在人力所能触及的冰川上完全可以大规模使用。人工降雪对于人力难以攀登或载具不便抵达之处,可进行人工降雪来提高反射率。 光学人工降雪比“用飞机或火箭散布干冰或碘化银”等传统方案更环保。 高重复频率飞秒强激光可以持续加热和电离冷湿空气,形成高速向上运动的暖湿气流,与上方的冷湿空气碰撞产生强对流和旋风,促进冰晶形成和尺寸增加;非线性成丝过程中产生的高密度高温带电粒子还可以诱导凝结核。 飞秒强激光在大气中能实现数千米到数十千米距离内的自导引传输。刷白屋顶加州大学洛杉矶分校的科研团队开发出一种对阳光反射率 98% 的白色涂料,有望涂在建筑物顶部反射阳光来帮助夏天室内降温。 此前市面上基于氧化钛的白色涂料对阳光的最大反射率约 85%。 新涂料的原料包括硫酸钡和粉末状聚四氟乙烯。 论文:https://www.cell.com/joule/fulltext/S2542-4351(20)30179-3对于当前气温尚未热到需要普遍降温的地区,你可以先考虑在屋顶上铺太阳能板来减少人们对化石燃料发电的需求。 via 知乎热榜 (author: 赵泠)

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人