【首个石墨烯制成的功能半导体问世,天津大学团队承担主要研究与攻关】

【首个石墨烯制成的功能半导体问世,天津大学团队承担主要研究与攻关】 据一财,有媒体报道称有研究团队创造了世界上第一个由石墨烯制成的功能半导体,相关论文发表在权威期刊Nature杂志上。上述报道所述论文名为“Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide”(《碳化硅上的超高迁移率半导体外延石墨烯》),论文的共同第一作者赵健、纪佩璇、李雅奇、李睿四人以及其余多位署名作者主要来自中国天津大学研究团队,同时也有 #美国 佐治亚理工学院的研究人员。

相关推荐

封面图片

全球首个由石墨烯材料制成的功能性半导体问世

全球首个由石墨烯材料制成的功能性半导体问世 近日,中国和美国科研人员联合研制出世界上第一个由石墨烯材料制成的功能性半导体。研究人员表示,这预示着一个电子新时代的到来,它为研制更小、更快、更高效的电子设备铺平了道路。不过,距离石墨烯半导体完全落地,估计还要10到15年。 、、《》杂志

封面图片

用于脑机接口的工程石墨烯界面有望改变神经科学

用于脑机接口的工程石墨烯界面有望改变神经科学 这项研究由加泰罗尼亚纳米科学和纳米技术研究所(ICN2)与巴塞罗那自治大学(UAB)及其他国内外合作伙伴共同发起,目前正通过衍生公司 INBRAIN Neuroelectronics 开发治疗应用。石墨烯技术的主要特点在欧洲石墨烯旗舰项目(European Graphene Flagship project)的多年研究之后,ICN2 与曼彻斯特大学(University of Manchester)合作,率先开发出 EGNITE(Engineered Graphene for Neural Interfaces,用于神经接口的工程石墨烯),这是一类新型的基于石墨烯的灵活、高分辨率、高精度植入式神经技术。该成果最近发表在《自然-神经技术》(Nature Neurotechnology)杂志上,旨在通过创新技术为神经电子学和脑机接口的蓬勃发展做出贡献。EGNITE 以其发明者在碳纳米材料制造和医学转化方面的丰富经验为基础。这项基于纳米多孔石墨烯的创新技术集成了半导体行业的标准制造工艺,可组装直径仅为 25 微米的石墨烯微电极。这种石墨烯微电极具有低阻抗和高电荷注入的特性,是灵活高效的神经接口的基本属性。临床前功能验证与 ICN2 合作的多位神经科学和生物医学专家利用中枢神经系统和周围神经系统的不同模型进行了临床前研究,结果表明 EGNITE 能够异常清晰和精确地记录高保真神经信号,更重要的是,它还能提供高度针对性的神经调节。EGNITE 技术将高保真信号记录和精确神经刺激独特地结合在一起,可能是神经电子疗法的一个重要进步。这一创新方法填补了神经技术领域的一个重要空白,而在过去二十年中,神经技术领域的材料几乎没有取得任何进展。EGNITE 电极的开发有能力将石墨烯置于神经技术材料的最前沿。国际合作与科学领导力石墨烯旗舰项目是欧洲在过去十年间提出的一项倡议,旨在推动欧洲在依靠石墨烯和其他二维材料的技术领域取得战略领先地位。这一科学突破的背后是 ICN2 研究人员 Damià Viana(现就职于 INBRAIN Neuroelectronics)、Steven T. Walston(现就职于南加州大学)和 Eduard Masvidal-Codina 在 ICREA 领导人 Jose A. Garrido 的指导下共同努力的结果。Garrido 和 ICREA Kostas Kostarelos(ICN2纳米医学实验室和英国曼彻斯特大学生物、医学与健康学院的负责人)的指导下进行。巴塞罗那自治大学(UAB)神经科学研究所和细胞生物学、生理学与免疫学系的泽维尔-纳瓦罗(Xavier Navarro)、娜塔莉亚-德拉-奥利瓦(Natàlia de la Oliva)、布鲁诺-罗德里格斯-梅阿纳(Bruno Rodríguez-Meana)和豪梅-德尔-瓦莱(Jaume del Valle)也参与了这项研究。这项合作得到了巴塞罗那微电子研究所(IMB-CNM)、英国曼彻斯特国家石墨烯研究所、法国格勒诺布尔阿尔卑斯大学格勒诺布尔神经科学研究所和巴塞罗那大学等国内外知名机构的大力支持。在 CIBER 研究员 Xavi Illa 博士的指导下,在 IMB-CNM(CSIC)的微米和纳米加工洁净室进行了与标准半导体制造工艺的技术整合。临床转化:下一步行动文章中描述的 EGNITE 技术已获得专利,并授权给 INBRAIN Neuroelectronics 公司使用,该公司是 ICN2 和 ICREA 在中船重工集团 IMB-CNM 支持下在巴塞罗那分拆出来的公司。该公司也是石墨烯旗舰项目的合作伙伴,目前正在牵头将这项技术转化为临床应用和产品。在首席执行官卡罗琳娜-阿吉拉尔(Carolina Aguilar)的领导下,INBRAIN Neuroelectronics 公司正在为这项创新石墨烯技术的首次人体临床试验做准备。加泰罗尼亚在半导体工程方面的产业和创新前景广阔,其雄心勃勃的国家战略计划建设最先进的设施,以生产基于新兴材料的半导体技术,这为加快将今天介绍的这些成果转化为临床应用提供了前所未有的机会。《自然-纳米技术》这篇文章介绍了一种基于石墨烯的创新神经技术,该技术可利用现有的半导体制造工艺进行升级,具有产生变革性影响的潜力。ICN2 及其合作伙伴将继续推进和成熟所述技术,以期将其转化为真正有效和创新的神经治疗技术。编译自:ScitechDaily ... PC版: 手机版:

封面图片

石墨烯取代沙子 制造更轻、更坚固的混凝土

石墨烯取代沙子 制造更轻、更坚固的混凝土 尽管石墨烯只是一张只有一个原子厚的碳原子薄片,但它却以无比坚固而著称。因此,这种"神奇材料"被掺入混凝土中也就不足为奇了,通常是为了使混凝土更加坚固耐用。但这通常只是在配方中加入石墨烯,而在新的研究中,莱斯大学的研究小组希望用它完全取代沙子。混凝土由三种主要成分组成:水、砂等骨料以及将其粘合在一起的水泥。按体积计算,砂是最大的成分,而由于现代人类对混凝土的贪得无厌,砂矿的开采量正在不断增加。这一过程不仅具有破坏性,而且还面临着资源枯竭的风险。这项研究来自莱斯大学化学家詹姆斯-图尔(James Tour)的实验室,他的团队多年来一直在使用他们开发的一种名为闪焦耳加热的技术制造石墨烯。从本质上讲,富含碳的基础材料在电流的作用下迅速过热,转化为石墨烯薄片。在这种情况下,基础材料是冶金焦炭,一种从煤炭中提取的燃料。"最初的实验是将冶金焦炭转化为石墨烯,结果得到了一种大小与沙子相似的材料,"该研究的第一作者保罗-阿芬库拉(Paul Advincula)说。"我们决定探索将冶金焦炭衍生的石墨烯用作混凝土中沙子的完全替代品,我们的研究结果表明,它的效果非常好。"节省沙子并不是唯一的好处。与使用普通骨料制成的混凝土相比,这种混凝土的重量减轻了 25%,韧性提高了 32%,峰值应变提高了 33%,抗压强度提高了 21%。但从另一方面看,其杨氏模量降低了 11%,而杨氏模量是衡量材料抗拉伸变形能力的指标。研究小组表示,虽然石墨烯目前过于昂贵,无法使这种方法在商业上实现规模化,但它至少表明,还有其他方法可以采用。这项研究发表在《ACS 应用材料》杂志上。 ... PC版: 手机版:

封面图片

研究发现双层石墨烯中的电子像没有质量的粒子一样运动

研究发现双层石墨烯中的电子像没有质量的粒子一样运动 艺术家绘制的天然双层石墨烯中的移动电荷。资料来源:Lukas Kroll此外,他们还证明,电流可以"开关",这为开发微小、节能的晶体管提供了可能就像家里的电灯开关,但却是纳米级的。美国麻省理工学院(MIT)和日本国立材料科学研究所(NIMS)也参与了这项研究。研究成果发表在科学杂志《自然通讯》上。安娜-塞勒博士。图片来源:Christian Eckel石墨烯的特性与挑战石墨烯于 2004 年被发现,是由单层碳原子组成的。石墨烯具有许多不寻常的特性,其中最著名的是其超高的导电性,这是因为电子在这种材料中以高速、恒定的速度穿行。这一独特的特性让科学家们梦想着利用石墨烯制造速度更快、能效更高的晶体管。所面临的挑战是,要制造出晶体管,需要控制材料在高导电状态之外还具有高绝缘状态。然而,在石墨烯中,载流子速度的这种"切换"并不容易实现。事实上,石墨烯通常没有绝缘状态,这限制了石墨烯作为晶体管的潜力。石墨烯晶体管研究取得突破性进展哥廷根大学的研究小组现在发现,自然形成的双层石墨烯中的两层石墨烯结合了两方面的优点:除了绝缘状态外,这种结构还能支持电子像光一样以惊人的速度运动,就像它们没有质量一样。研究人员发现,通过施加垂直于材料的电场,可以改变这种状况,使双层石墨烯成为绝缘体。托马斯-韦茨教授。资料来源:T Weitz快速移动电子的这一特性早在 2009 年就已在理论上得到预测,但由于 NIMS 提供的材料以及与麻省理工学院在理论方面的密切合作,样品质量显著提高,才有可能在实验中发现这一特性。虽然这些实验是在低温条件下进行的低于冰点约 273°但它们显示了双层石墨烯制造高效晶体管的潜力。"我们早就知道这个理论。但是,现在我们已经进行了实验,实际显示了电子在双层石墨烯中类似光的分散。对于整个团队来说,这是一个非常激动人心的时刻,"哥廷根大学物理系的托马斯-韦茨教授说。哥廷根大学博士后研究员、第一作者 Anna Seiler 博士补充说:"我们的工作只是迈出了关键的第一步。研究人员下一步将研究双层石墨烯是否真的能改善晶体管,或者研究这种效应在其他技术领域的潜力。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科研人员在月壤样本首次发现天然石墨烯

中国科研人员在月壤样本首次发现天然石墨烯 中国科研人员通过对嫦娥五号钻采岩屑月壤的观察分析,首次发现了天然形成的少层石墨烯。 据科技日报星期天(6月23日)报道,来自吉林大学、中国科学院金属研究所、国家深空探测实验室、探月与航天工程中心等的科研人员通过对嫦娥五号钻采岩屑月壤的观察分析,首次发现了天然形成的少层石墨烯。 报道称,相关研究为月球的地质活动和演变历史以及月球的环境特点提供了新见解,为月球的原位资源利用提供了重要信息及线索。 据估计,星际碳总量中约1.9%是以石墨烯的形式存在,其形态和性质由特定的形成过程决定。因此,天然石墨烯的组成和结构特征将为星体的地质演化和月球的原位资源利用提供重要的参考和信息。 在这项研究中,科研团队采用电镜拉曼联用技术,在月壤样品含碳量相对较高的位置采集了拉曼光谱,确认了月壤样品中石墨碳的结晶质量相对较高。值得注意的是,月壤样品中存在碳的区域含有铁化合物,这与石墨烯的形成密切相关。 科研团队还通过扫描电子显微成像、透射电子显微成像、冷冻条件下球差电镜的高角环形暗场像和高分辨像、能谱和电子能量损失谱、飞行二次质谱等多种表征技术的综合运用及测试结果的多方面严谨比对分析,探究并证实了月壤样品中检测到的石墨碳是少层石墨烯。 2020年12月,中国月球探测器嫦娥五号从月球带回1731克月壤样品,是人类首次获得的月表年轻火山岩区样品。截至今年6月初,嫦娥五号月壤样品已完成向40家科研机构的114个科研团队发放258份77.7克,目前已有多个领域70余项嫦娥五号月球样品研究成果在中外重要学术期刊发表。 石墨烯具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。 2024年6月24日 7:55 AM

封面图片

石墨烯的新挚友:新研发的UV胶带可轻松转移这种神奇材料

石墨烯的新挚友:新研发的UV胶带可轻松转移这种神奇材料 九州大学和日东电工的研究人员开发出一种胶带,它能在紫外线照射下改变对二维材料的"粘性"。资料来源:九州大学阿戈实验室现在,九州大学的一个研究小组与日本日东电工公司合作开发出了一种胶带,可用于将二维材料粘贴到许多不同的表面上,而且操作简便、易于使用。他们的研究成果发表在 2024 年 2 月 9 日的《自然-电子学》(Nature Electronics)杂志上。"转移二维材料通常是一个非常技术性和复杂的过程;材料很容易撕裂或受到污染,从而大大降低其独特的性能,"领衔作者、九州大学全球创新中心的 Hiroki Ago 教授说。"我们的胶带提供了一种快速、简单的替代方法,并能减少损坏"。九州大学的研究人员发现,使用紫外线胶带而不是聚合物转移石墨烯能更好地保持材料的完整性并减少缺陷。资料来源:九州大学阿戈实验室研究人员首先关注石墨烯。石墨烯由碳原子薄片制成,具有坚韧、柔韧、轻质、高导热性和高导电性等特点。石墨烯一经发现就被誉为"神奇材料",可应用于生物传感、抗癌药物输送、航空和电子设备等领域。"制造石墨烯的主要方法之一是化学气相沉积法,即在铜膜上生长石墨烯。但要发挥正常性能,石墨烯必须与铜分离,并转移到硅等绝缘基底上,"阿戈教授解释说。"要做到这一点,需要在石墨烯上覆盖一层保护性聚合物,然后使用酸等蚀刻溶液去除铜。附着到新基底后,再用溶剂溶解聚合物保护层。这一过程成本高、耗时长,而且可能导致石墨烯表面出现缺陷或留下聚合物的痕迹。"因此,阿戈教授和他的同事旨在提供一种转移石墨烯的替代方法。他们利用人工智能技术开发了一种被称为"紫外线胶带"的特殊聚合物胶带,这种胶带在紫外线照射下会改变对石墨烯的吸引力。新设计的紫外线胶带能够将二维材料(包括石墨烯和过渡金属二卤化物)转移到一系列不同的基底上,包括硅、陶瓷、玻璃和塑料。资料来源:九州大学阿戈实验室在紫外线照射之前,胶带与石墨烯的粘附力很强,可以将其"粘"住。然而,紫外线照射后,原子键发生变化,与石墨烯的粘附力降低了约 10%。紫外线胶带也会变得稍硬,更容易剥离。综合来看,这些变化使得胶带可以从设备基板上剥离,同时留下石墨烯。研究人员还开发出了可以转移另外两种二维材料的胶带:白石墨烯(hBN)和过渡金属二卤化物(TMDs),前者是一种绝缘体,可以在二维材料堆叠时充当保护层,后者则是下一代半导体的理想材料。重要的是,当研究人员仔细观察二维材料转移后的表面时,他们发现与目前使用传统技术转移时相比,二维材料表面更光滑,缺陷更少。在测试这些材料的特性时,他们还发现它们的效率更高。迄今为止,九州大学和日东电工的研究人员已经成功地利用紫外线胶带转移了直径达 10 厘米的石墨烯晶片。对于较小的 UV 胶带,粘贴和剥离可以用手完成。不过,在大规模生产时,机器是非常有用的。资料来源:Nakatani 等人,《自然-电子学》,与目前的转印技术相比,使用紫外线胶带进行转印还具有许多其他优势。由于 UV 胶带可以弯曲,而且转印过程不需要使用塑料溶解溶剂,因此可以使用柔性塑料作为设备的基底,从而扩大了潜在的应用范围。"例如,我们制作了一个塑料装置,利用石墨烯作为太赫兹传感器。与 X 射线一样,太赫兹辐射可以穿过光线无法穿过的物体,但不会对人体造成伤害,"阿戈教授说。"它在医学成像或机场安检方面大有可为。"更重要的是,UV 磁带可以按尺寸裁剪,因此只需传输准确数量的二维材料,从而最大限度地减少浪费,降低成本。不同材料的二维层还可以很容易地以不同的方向相互叠加,使研究人员能够探索叠加材料的新特性。下一步,研究人员的目标是将紫外线胶带的尺寸扩大到制造商所需的规模。目前,可以转移的最大石墨烯晶片直径为 10 厘米。阿戈教授和他的同事们还在努力解决胶带上形成的褶皱和气泡问题,这些褶皱和气泡会造成小缺陷。研究小组还希望提高二维材料的稳定性,以便二维材料能更长时间地附着在紫外线胶带上,并分发给最终用户,如其他科学家。"最终用户只需像贴儿童贴纸一样贴上和撕下紫外线胶带,就能将材料转移到所需的基底上,无需任何培训,"阿戈教授说。"这种简便的方法可以从根本上改变研究风格,加快二维材料的商业开发。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人