【首次人工合成淀粉,究竟是怎么做到的?】在计算设计的人工途径中,生物酶催化剂是成功构建这条途径的核心关键。科研团队从动物、植物、

【首次人工合成淀粉,究竟是怎么做到的?】在计算设计的人工途径中,生物酶催化剂是成功构建这条途径的核心关键。科研团队从动物、植物、微生物等 31 个不同物种来源,挖掘合适的生物酶催化剂,构建了一条只有 11 步反应的人工淀粉合成途径,与自然界淀粉合成需要的 60 多个步骤相比,显著降低了合成的复杂度。 #抽屉IT

相关推荐

封面图片

催化剂将氢电解器中的铱用量减少了95%

催化剂将氢电解器中的铱用量减少了95% 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 日本理化学研究所可持续资源科学中心(CSRS)的中村隆平(Ryuhei Nakamura)领导的研究人员在今天(5 月 9 日)发表在《科学》杂志上的一项研究中报告了一种新方法,该方法将反应所需的铱量减少了 95%,而且不会改变氢的生产率。这一突破将彻底改变我们生产生态友好型氢气的能力,并有助于实现碳中和的氢经济。合成氧化铱的扫描电子显微镜图像(D)和分散在电沉积在耐腐蚀铂涂层钛网上的氧化锰上的铱(亮点)的扫描透射电子显微镜图像(E、F、G)。资料来源:理化学研究所制氢挑战世界上 70% 的面积被水覆盖,氢气是真正的可再生能源。然而,从水中提取氢气的规模还无法与化石燃料能源生产相媲美。目前,全球能源产量接近 18 兆瓦,这意味着在任何特定时刻,全球平均生产约 18 万亿瓦特的电力。替代性绿色能源生产方式要想取代化石燃料,就必须能够达到相同的能源生产率。从水中提取氢气的绿色方法是一种需要催化剂的电化学反应。这种反应的最佳催化剂产氢率最高、最稳定的催化剂是稀有金属,其中铱是最好的催化剂。但铱的稀缺是个大问题。共同第一作者孔爽说:"铱是如此稀有,以至于将全球氢气生产规模扩大到太瓦级估计需要40年的铱。"催化剂开发的创新理化学研究所 CSRS 的生物功能催化剂研究小组正试图绕过铱的瓶颈,寻找其他方法来长时间高速生产氢气。从长远来看,他们希望开发出基于普通土金属的新型催化剂,这种催化剂将具有高度的可持续性。事实上,该团队最近使用一种氧化锰作为催化剂,成功地将绿色制氢稳定在一个相对较高的水平。不过,以这种方式实现工业水平的生产还需要数年时间。中村隆平说:"我们需要一种方法来弥合稀有金属电解槽与普通金属电解槽之间的差距,这样我们就能在多年内逐步过渡到完全可持续的绿色氢气。"目前的研究正是通过将锰与铱相结合来实现这一目标。研究人员发现,当他们把铱原子分散在一块氧化锰上,使它们不会相互接触或凝结在一起时,质子交换膜(PEM)电解槽中的氢气产生速度与单独使用铱时相同,但铱含量减少了 95%。潜力和未来方向使用这种新型催化剂,可以连续生产氢气超过 3000 小时(约 4 个月),效率高达 82%,且无降解。合著者李爱龙说:"氧化锰和铱之间意想不到的相互作用是我们取得成功的关键。这是因为这种相互作用产生的铱处于罕见的高活性 +6 氧化态"。中村隆平认为,新催化剂达到的制氢水平极有可能立即派上用场。他说:"我们希望我们的催化剂能够很容易地转移到现实世界的应用中,这将立即提高目前 PEM 电解器的容量。"研究小组已经开始与工业界的合作伙伴合作,他们已经能够改进最初的铱锰催化剂。今后,理化学研究所 CSRS 研究人员计划继续研究铱和氧化锰之间的特定化学作用,希望能进一步减少必要的铱含量。同时,他们将继续与工业合作伙伴合作,并计划在不久的将来在工业规模上部署和测试这种新型催化剂。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现足够廉价的燃料电池催化剂关键成分

科学家发现足够廉价的燃料电池催化剂关键成分 然而,要在这些铁氮碳催化剂的耐久性和效率之间取得平衡却并非易事,因此这一过程充满了挑战。虽然他们已经成功地使催化剂具有持久性或高性能,但同时实现这两个属性仍然是一个巨大的障碍。布法罗大学领导的一项新研究可能会提供一种解决方案。在《自然-催化》杂志上,研究人员报告了如何在制造过程中加入氢气,从而制造出接近铂金性能的强效催化剂。前排中间的吴刚正在努力降低与生产气候友好型燃料电池相关的成本。图片来源:布法罗大学 Douglas Levere。这一进展表明,燃料电池技术在帮助汽车、卡车、火车、飞机和其他重型车辆实现无污染供电的潜力方面迈出了重要一步。"多年来,科学界一直在努力平衡这种权衡。我们可以制造出低成本的有效物质,但它们太容易降解。或者,我们可以制造出非常稳定的物质,但其性能却无法与铂相提并论。"这项研究的通讯作者、工程与应用科学学院化学与生物工程系教授吴刚博士说:"通过这项工作,我们朝着解决这个问题迈出了一步。这项工作建立在吴领导的先前研究基础之上,该研究描述了铁-氮-碳催化剂,虽然这种催化剂经久耐用,但却难以加快燃料电池中的重要化学反应。新研究在一种名为热解的制造工艺中解决了这一局限性,该工艺涉及使用极高的温度来组合材料。在高温分解过程中,研究人员在高温舱中将四个氮原子与铁结合在一起。然后,他们将这种材料嵌入几层石墨烯中,石墨烯是一种坚韧、轻盈、柔韧的碳。通常,这一过程是在一个装有氩气等惰性气体的腔体内进行的。但这次,研究人员将氢气送入舱内,形成了 90% 的氩气和 10% 的氢气混合物。因此,研究人员能够更精确地控制催化剂的构成。具体来说,他们能够将两种不同的铁-氮-碳化合物(一种含有 10 个碳原子,另一种含有 12 个碳原子)置于有助于提高耐久性和效率的位置。由此产生的催化剂达到了燃料电池的初始性能,远远超过了能源部 2025 年的目标。事实证明,它比大多数铁氮碳催化剂更耐用,接近燃料电池使用的典型低铂阴极。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

用糖制成的廉价催化剂具有消灭甚至再利用二氧化碳的能力

用糖制成的廉价催化剂具有消灭甚至再利用二氧化碳的能力 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 随着碳捕集技术的最新进展,燃烧后碳捕集正在成为帮助解决全球气候变化危机的一个可行方案。但如何处理捕获的碳仍然是一个悬而未决的问题。新型催化剂有可能提供一种解决方案,通过将其转化为更有价值的产品来处理这种强效温室气体。这项研究将发表在 5 月 3 日出版的《科学》杂志上。这项研究的共同负责人、西北大学的 Milad Khoshooei 说:"即使我们现在停止排放二氧化碳,由于过去几个世纪的工业活动,我们大气中的二氧化碳仍然会过剩。这个问题没有单一的解决方案。我们需要减少二氧化碳的排放,并寻找新的方法来降低大气中已经存在的二氧化碳浓度。我们应该利用所有可能的解决方案。"该示意图显示了制造催化剂并用其转化二氧化碳的全过程。资料来源:Milad Khoshooei"我们不是第一个将二氧化碳转化为另一种产品的研究小组,"该研究的资深作者、西北大学的 Omar K. Farha 说。"然而,要使这一工艺真正实用,催化剂必须满足几个关键标准:经济性、稳定性、易生产性和可扩展性。平衡这四个要素是关键。幸运的是,我们的材料在满足这些要求方面表现出色"。法尔哈是碳捕集技术方面的专家,现任西北大学温伯格文理学院查尔斯-莫里森(Charles E. and Emma H. Morrison)化学教授。Khoshooei 在加拿大卡尔加里大学攻读博士学位时开始这项工作,现在是 Farha 实验室的博士后研究员。新型催化剂背后的秘密是碳化钼,这是一种硬度极高的陶瓷材料。与许多其他需要昂贵金属(如铂或钯)的催化剂不同,钼是一种廉价、非贵重、地球上富集的金属。要将钼转化为碳化钼,科学家们需要一种碳源。他们在一个意想不到的地方发现了廉价的选择:储藏室。令人惊讶的是,糖几乎家家户户都有的白色颗粒状糖成为了一种廉价、方便的碳原子来源。Khoshooei 说:"在我尝试合成这些材料的每一天,我都会从家里带糖到实验室。与催化剂常用的其他类材料相比,我们的材料价格低廉得令人难以置信"。在测试催化剂时,Farha、Khoshooei 和他们的合作者对催化剂的成功留下了深刻印象。催化剂在环境压力和高温(300-600摄氏度)条件下工作,以 100% 的选择性将CO2转化为 CO。高选择性意味着催化剂只对二氧化碳起作用,而不会破坏周围的材料。换句话说,工业界可以将催化剂用于大量捕集气体,并选择性地只针对二氧化碳。此外,催化剂还具有长期稳定性,即保持活性,不会降解。法尔哈说:"在化学中,催化剂在几个小时后失去选择性并不罕见。但是,在苛刻的条件下使用 500 小时后,其选择性并没有改变。"这一点尤其引人注目,因为二氧化碳是一种稳定而顽固的分子。"转化二氧化碳并不容易,"Khoshooei 说。"二氧化碳是一种化学性质稳定的分子,我们必须克服这种稳定性,而这需要大量的能量。"开发碳捕集材料是法尔哈实验室的主要工作。他的研究小组开发的金属有机框架(MOFs)是一类高孔隙率的纳米级材料,法尔哈将其比喻为"精密且可编程的洗浴绵"。法尔哈探索 MOFs 的各种应用,包括直接 从空气中提取二氧化碳。现在,法尔哈说,MOFs 和这种新型催化剂可以共同在碳捕集与封存中发挥作用。法尔哈说:"在某些时候,我们可以使用 MOF 捕获二氧化碳,然后再使用催化剂将其转化为更有益的物质。利用两种不同材料进行两个连续步骤的串联系统可能是未来的发展方向"。"这可以帮助我们回答'如何处理捕获的二氧化碳'这一问题"。Khoshooei 补充道。"目前的计划是将其封存在地下。但地下水库必须满足许多要求,才能安全、永久地储存二氧化碳。我们希望设计一种更通用的解决方案,可以在任何地方使用,同时增加经济价值。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新发现的有机催化剂可替代铂而大大降低燃料电池的成本

新发现的有机催化剂可替代铂而大大降低燃料电池的成本 大气中的二氧化碳含量已达到前所未有的高度,这就更加需要清洁能源解决方案来替代化石燃料。研究人员面临的一个障碍是,目前的燃料电池技术依赖于使用昂贵的金属催化剂(如铂)来将氢气转化为能量;然而,弗吉尼亚大学艺术与科学学院和研究生院的一个研究小组发现了一种有机分子,它可以有效地替代传统的金属催化剂,而且成本更低。燃料电池使电动汽车、工业和民用发电机成为可能,也是储存风能或太阳能所需的能源,它使用铂等金属引发化学反应,将氢气等燃料分裂成质子和电子,然后利用这些质子和电子发电。到目前为止,稀有金属催化剂的有机替代品还不被认为是实用的,因为催化过程会导致它们分解成不再有用的组成部分。然而,在《美国化学学会杂志》上发表的一篇论文中,化学副教授查尔斯-马坎和迈克尔-希林斯基,以及博士生艾玛-库克和安娜-戴维斯,发现了一种由碳、氢、氮和氟组成的有机分子,它有可能成为一种实用的替代品。马坎说,这种分子不仅可以启动氧气的还原反应(这是燃料电池内部发生的反应),还可以继续与反应产物发生反应,然后恢复到原来的状态。这些分子在大多数分子降解的条件下都很稳定,而且它们能持续获得与过渡金属催化剂水平相当的活性。查尔斯-马坎(左)和迈克尔-希林斯基(右)发现了一种有机分子,它可以取代燃料电池中稀有而昂贵的金属。资料来源:弗吉尼亚大学这一发现为寻找使用可持续性更强、生产成本更低的材料的高效燃料电池迈出了重要一步,并有可能在未来五到十年内开发出下一代燃料电池。"这种分子本身可能无法应用于燃料电池,"马坎说。"这一发现表明,可以存在碳基催化材料,如果用某些化学基团对其进行修饰,就有望将其转化为氧气还原反应的催化剂。最终的目标是将这种分子如此稳定的特性整合到大块材料中,以取代铂的使用。"希林斯基的研究小组主要研究有机化学,他强调了研究小组跨学科性质的重要性。"希林斯基说:"我们用作催化剂的这种分子在我的实验室已有历史,但我们一直在研究它在化学反应中的用途,这些反应是在更大的含碳分子上进行的,比如药物中的活性成分。"如果没有查理-马坎的专业知识,我不认为我们会把它与燃料电池化学联系起来"。这一发现还可能对过氧化氢的工业生产产生影响,过氧化氢是一种家用产品,也可用于造纸和废水处理。"制造过氧化氢的过程对环境不友好,而且非常耗能,"马坎说。"它需要对甲烷进行高温蒸汽重整,以释放出用于生成过氧化氢的氢气。"他的团队的研究成果还可以改进该工艺的催化部分,从而对工业和环境以及水处理技术产生积极影响。希林斯基还指出,这一发现以及由此引发的合作所产生的影响可能远远超出能量储存的范围。"从大的方面来说,这项研究最令人兴奋的一点是,通过使催化剂电气化,我们改变了催化剂的反应方式。这是意料之外的事情,也可能对药物合成有用,我的研究小组正急于探索这一点。"马坎的研究小组主要从事分子电化学研究,他还将这一发现归功于研究小组的跨学科性质。"如果没有小组在制造能够进行必要反应的稳定有机分子方面的专有技术,这项工作就不可能完成。这种独特的有机分子使我们能够做到通常只有过渡金属才能做到的事情,"马坎说。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

秘鲁“外星人遗体”鉴定结果出炉:人工合成的人偶

秘鲁“外星人遗体”鉴定结果出炉:人工合成的人偶 秘鲁法医和司法鉴定研究所的考古专家 12 日在一场新闻发布会上揭露了去年 10 月出现的“外星人遗体”的骗局,证实了这些遗体其实是由纸、胶、金属和动物以及人类骨头制成的人偶。 法医考古学家弗拉维奥・埃斯特拉达 (Flavio Estrada) 领导了这次调查并揭露真相:“令人失望的是,一些人竟相信这些东西来自‘外星基地’或‘另一个星球’,完全是荒谬的猜测。”他强调,“结论很简单,这些布偶是用现代合成胶水粘合的动物骨骼拼成的,并非史前生物,更不是外星人。” 目前,检察院仍在调查这些物品的拥有者。据悉,它们原本准备运往墨西哥,于去年 10 月被海关截获。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

珊瑚白化:表层下微生物混乱的催化剂

珊瑚白化:表层下微生物混乱的催化剂 2019 年白化事件期间,研究人员在法属波利尼西亚莫奥里亚的珊瑚礁上潜水。图片来源:Milou Arts of NIOZ由夏威夷大学马诺阿分校(UH)和荷兰皇家海洋研究所(NIOZ)领导的新研究发现,当珊瑚白化发生时,珊瑚会向周围的水中释放独特的有机化合物,这不仅会促进细菌的整体生长,而且会选择可能会进一步对珊瑚礁造成压力的机会性细菌。"我们的研究结果表明,短期热应力和长期白化的影响可能会超出珊瑚的范围,延伸到水体中,"共同第一作者、马诺阿大学热带农业与人力资源学院博士后研究员、马诺阿大学海洋与地球科学技术学院(SOEST)前博士生韦斯利-斯帕拉贡(Wesley Sparagon)说。研究小组成员包括来自马诺阿大学、国家海洋研究所、斯克里普斯海洋学研究所和加州大学圣巴巴拉分校的科学家,他们对2019年法属波利尼西亚穆雷阿岛白化事件期间收集的白化和未白化珊瑚进行了实验。这项研究的资深作者、SOEST 教授克雷格-尼尔森(Craig Nelson)说:"尽管珊瑚白化是一个有据可查的现象,而且在全球珊瑚礁中越来越普遍,但有关珊瑚礁水柱微生物学和生物地球化学影响的研究却相对较少。"作者 Irina Koester 博士(左)和 Jessica Bullington 博士(右)以及共同第一作者 Wesley Sparagon 博士(中)在莫奥里亚的甘普站使用蠕动泵对微生物群落进行采样。图片来源:克雷格-尼尔森,马诺阿大学/ SOEST实验结果和微生物反应在加热实验中,研究小组确定,与未漂白的珊瑚相比,受热胁迫的珊瑚和漂白的珊瑚在应对热胁迫时会散发出不同成分的有机物。这些独特的化合物为周围水域中的微生物群落提供了营养,使其数量增加。斯帕拉贡说:"有趣的是,对白化珊瑚渗出物做出反应的微生物与在健康珊瑚渗出物上生长的微生物截然不同。而且,快速生长的机会主义者和潜在病原体的丰度更高。这些微生物群落在受压珊瑚周围的生长可能会通过窒息或引入疾病对珊瑚造成伤害。"作者 Zach Quinlan 博士(左)和共同第一作者 Milou Arts(右)使用蠕动泵收集溶解有机碳样本。资料来源:Wesley Sparagon,马诺阿大学最令人惊讶的是,珊瑚释放化合物的这种变化发生在研究中经历过任何压力的珊瑚身上:已受热但尚未漂白的珊瑚、既受热又漂白的珊瑚以及之前在野外漂白过的珊瑚。NIOZ的共同第一作者米卢-阿茨(Milou Arts)说:"这表明,这一过程发生在珊瑚白化的整个过程中,从热应力开始一直到恢复。重要的是,它在热应力下的健康珊瑚中最为明显,这表明它在热应力开始时影响最大,可能会将珊瑚推向更严重的白化,最终导致死亡。"研究人员正在积极研究如何识别水体中的化合物和微生物,它们可以作为珊瑚礁受到压力时的预警系统。这可以加强或补充其他珊瑚礁保护工作,特别是在发生灾难性破坏之前识别珊瑚礁压力方面。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人