: PSR J- 是已知转速第二快的脉冲星,根据发表在《Astrophysical Journal Letters》期刊上的一

-- : PSR J- 是已知转速第二快的脉冲星,根据发表在《Astrophysical Journal Letters》期刊上的一项研究, 。J 是在 年发现的,位于六分仪座,距离地球大约 万光年。它每秒旋转 次,旋转周期 . 毫秒,仅次于 PSR J- 的 . 毫秒。J 正在吞噬临近的伴星,因此又被称为黑寡妇脉冲星。在最新研究中,斯坦福大学的天文学家使用夏威夷的Keck I 望远镜,估计 J 的质量为 . 倍太阳质量,误差 ±. 个太阳质量,超过 PSR J+ 的. 倍太阳质量,为已知的质量最重的中子星。

相关推荐

封面图片

FAST 发现轨道周期最短的脉冲星双星

FAST 发现轨道周期最短的脉冲星双星 2023年6月21日,国际学术期刊《自然》在线发表中国科学院国家天文台姜鹏研究团队的一项重要成果。该团队利用中国天眼FAST发现了一个名为PSR J1953+1844(M71E)的双星,其轨道周期仅为53分钟,是目前发现轨道周期最短的脉冲星双星系统。双星系统如果距离很近,脉冲星会吞噬伴星的物质,使自身越转越快,两颗星的距离越靠越近,相互绕转速度也越来越快。随着双星系统演化,恒星被大量蚕食后质量变小,脉冲星难以继续吸积并把恒星推开,其相互绕转的速度也会变慢。来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

天文学家发现中子星环绕“不应该存在”的神秘天体运行

天文学家发现中子星环绕“不应该存在”的神秘天体运行 艺术家眼中的神秘双星系统 MPIfR; Daniëlle Futselaar ()天文学家利用南非的 MeerKAT 射电望远镜,在哥伦布星座一个名为 NGC 1851 的球状星团中发现了一颗脉冲星,从而揭开了这个谜团。脉冲星是一种具有强磁场的中子星,它产生的无线电波像灯塔的光束一样向四周扫射。当这些电波锥碰巧面向地球时,我们就会看到它们在有规律地跳动,脉冲星也因此而得名。天文学家利用南非的 MeerKAT 射电望远镜,在哥伦布星座一个名为 NGC 1851 的球状星团中发现了一颗脉冲星,从而揭开了这个谜团。脉冲星是一种具有强磁场的中子星,它产生的无线电波像灯塔的光束一样向四周扫射。当这些电波锥碰巧面向地球时,我们就会看到它们在有规律地跳动,脉冲星也因此而得名。由于这些信号是如此稳定和可预测,天文学家可以研究它们的时间,并计算出有关其周围环境的惊人信息量。在这种情况下,他们发现这颗脉冲星与另一个天体一起运行这时事情开始变得诡异起来。"当我们查看NGC 1851的哈勃图像时,我们在那个位置什么也没看到,"该研究的合著者Prajwal Voraganti Padmanabh说。"因此,与脉冲星在轨道上运行的天体不是一颗正常的恒星,而是一颗坍缩恒星的密度极高的残余物。"众所周知,这些坍缩的恒星残骸有两种形式:要么是另一颗中子星,要么是一个黑洞。但有一个问题这个天体被发现质量太大,不可能是一颗中子星,但质量不够大,不可能是一个黑洞。根据模型,中子星总是小于大约两个太阳质量,而黑洞永远不会轻于大约五个太阳质量。对宇宙的观测也证明了这一点紧凑的天体总是属于其中一类。总之,直到现在。新发现的这个天体的质量大约是太阳质量的 2.1 到 2.7 倍,完全符合既定的"质量差距"。这意味着,它可能是已知最重的中子星,也可能是已知最轻的黑洞或许,完全是另一种东西。这项研究的合著者保罗-弗莱雷(Paulo Freire)说:"不管这个天体是什么,这都是一个令人兴奋的消息。如果它是一个黑洞,这将是已知的第一个脉冲星/黑洞系统,几十年来这一直是脉冲星天文学的圣杯。如果它是一颗中子星,这将对我们理解物质在这种惊人密度下的未知状态产生根本性影响。"研究人员提出,这个奇怪的系统实际上是由之前的两个双星系统形成的。其中一个包含两颗中子星,它们相撞后合并成一个小于平均水平的黑洞。而另一个系统则包含一颗中子星,它与另一颗恒星的轨道很近,前者从后者身上汲取物质。这个过程在宇宙中很常见,它将角动量传递给中子星,使其变成一颗快速旋转的脉冲星。另一颗恒星则变成了被称为白矮星的死壳。最终,黑洞闯入了双星系统,三个天体的复杂运动导致白矮星被抛出。这就形成了今天看到的脉冲星/黑洞系统。这并不是在质量间隙中发现的第一个天体。2019 年,引力波探测器捕捉到了一个 23 个太阳质量的黑洞吞食2.6 个太阳质量物体的信号。由于这是在天体被摧毁后才发现的,我们只能从中了解到这么多。值得庆幸的是,NGC 1851 有一个活着的黑洞,我们可以继续研究它。这项研究的合著者阿鲁尼玛-杜塔(Arunima Dutta)说:"我们对这个系统的研究还没有结束。揭开伴星的真实面目将是我们了解中子星、黑洞以及黑洞质量间隙中可能潜藏的其他东西的一个转折点!"这项研究发表在《科学》杂志上。下面的视频展示了该系统的拟议形成过程。 ... PC版: 手机版:

封面图片

“中国天眼”FAST 已经发现了 883 颗脉冲星

“中国天眼”FAST 已经发现了 883 颗脉冲星 图片截自央视新闻频道那么,脉冲星究竟是什么?为什么要大费周章地找,找到以后又有什么用呢?今天咱们就来仔细聊聊,顺便再跟大家分享点关于 FAST 的小八卦。脉冲星是指疯狂闪烁的星吗?先说说“脉冲星”。从地球看来,脉冲星是周期性地闪烁电磁脉冲的天体,脉冲间隔极短,从几毫秒到上百秒不等。不过,脉冲星并不是真的在闪烁,所谓脉冲,只是脉冲星以发疯般的速度旋转造成的假象。那脉冲星是怎么来的呢?其实是恒星“内心拉扯”的结果。我们肉眼能看到的“正常”恒星,内部都有两股力量在相互抗衡:引力驱使恒星物质向核心坠落,而核聚变释放的能量则把物质向外推。核聚变的燃料总有用完的一天,所以引力总能最终赢得这场角力。当一颗大质量恒星(例如,超过 8 倍太阳质量)最终耗尽所有燃料时,它就会向中心坍缩,发生猛烈的内爆,再向外弥散,迸发出一朵绚烂的“烟花”。这个过程叫做“超新星爆发”。北宋至和元年(1054 年),金牛座的“天关”星宿附近爆发过一颗超新星,白天可见 23 天,夜晚可见 22 个月。这起超新星爆发被中国的天文学家记录下来,史称“天关客星”。尘烟散去,在恒星原来的位置,可能会留下一颗非常致密的天体中子星。在其内部,原子结构不复存在,电子被压入原子核,与质子结合为中子。中子星的质量超过 1.4 个太阳,直径却只有十几公里。换句话说,每立方厘米的中子星物质,相当于全球人类的质量总和!中子星还继承了恒星残余质量的旋转角动量。在同样的角动量下,转速与半径的平方成反比。我们每每看到,冰舞运动员在旋转时把双臂收拢或举到头顶,就会猛然滴溜溜地转得飞快。同理,当恒星坍缩为中子星后,转速会成亿倍地飙升。脉冲星的射电脉冲扫过地球。Michael Kramer制作中子星具有强磁场,驱动其周围的带电粒子,发出强烈的射电辐射束,从它的两个磁极喷涌而出。如果随中子星自转的辐射束正好扫过地球,我们就能测到周期性的射电脉冲,就好比某些迪厅的特效灯总是在转圈圈,虽然灯光一直开着,但从一个方向看过去就时亮时暗。嗯,这么一比喻,那脉冲星可以说属于是恒星的遗体在自己坟头蹦迪了……前面提过的天关客星,就留下了一颗周期 33 毫秒(每秒自转 30 圈)的脉冲星,抛散出的渐冷烟花则是著名的蟹状星云。蟹状星云。图源NASA在全球发现的 3000 多颗脉冲星中,绝大多数是中子星,但也有 2 颗是白矮星(还保有原子结构的低质量恒星遗骸):天蝎座 AR 和宝瓶座 AE。FAST 可不是“快”的意思大部分脉冲星在可见光波段没有显著辐射,而在射电波段看起来比较亮。幸运的是,在地球这边,大气层对射电波段相当优待,透明度极高,所以射电望远镜特别适合在地面上观测脉冲星。地球大气层对各波长电磁波的屏蔽。图源 NASA接下来就说说咱们的 FAST。FAST 的名字来自“500 米口径球面射电望远镜”(Five-hundred-meter Aperture Spherical radio Telescope)的英文缩写。这座巨型单碟射电望远镜坐落在贵州省平塘县大窝凼(dàng),依照喀斯特地貌的天然洼地而建,2011 年开工,2016 年落成,是目前世界第一大的全口径均有反射面的射电望远镜(俄罗斯的 RATAN-600 口径虽有 576 米,却只有细细一圈反射环)。FAST 鸟瞰。图源 FAST 官网顺便说说,大家可能觉得 FAST 这个缩写听起来很酷,而全称却显得太直白了。没办法,“缩写不明觉厉,全称真没创意”这是天文界的传统,比如 TMT 是“30 米望远镜”,VLT 是“甚大望远镜”,ELT 是“特大望远镜”,EELT 是“欧洲特大望远镜”。韦布空间望远镜听起来是不是还算正常?可它最初的名字其实是“下一代空间望远镜”(相对于哈勃而言)……为什么射电望远镜都这么大?这是因为在相同的分辨率需求下,要观测的波长越长,“锅”的口径就得越大,不然就看不清了。在红外波段工作的韦布望远镜比主攻可见光的哈勃望远镜口径要大(6.5 米 vs 2.4 米),而射电望远镜要观测的波段,比这俩还要高 5、6 个数量级,那是真非往大了整不可了,口径就是正义用在这里是一点都没错。细心的读者可能还有两个疑问:①球面实际上无法将遥远星光汇聚到单一焦点,得用抛物面才行,FAST 为何要做成球面望远镜?②一口大锅这么摆在地上,岂不是只盯着天顶一点,就算随着地球自转,也只能扫描天顶所在的这个圆?实际上,这是一个常见的误解,也是科普的时候使用简略类比带来的负面影响。因为形状的关系,我们很喜欢把各类射电望远镜称为“锅”。但是这样一来,我们的思维也会被误导,容易觉得 FAST 也像咱们家炒菜的大铁锅一样,硬邦邦一整个,形状不会改变,但实际上,FAST 的身段灵活得很。FAST 由 4450 片反射板拼成,通过电机驱动,这些反射板能够改变姿态,当一片区域的反射板在统一指挥下规律地调整,就能在“锅”里泛起一片“涟漪”,改变镜面的形状。经“FAST 之父”南仁东和团队的计算,只需和球面偏离 0.47 米,就可以把口径 300 米的球面改成抛物面,把射电信号聚焦在一点。所以,在任意时刻,FAST 只有一片口径 300 米的圆形工作区域。通过反射板的齐心协力地调整,这个工作区能在“锅”里自如“漂移”,所以可观测天区的范围相当广。倘若保持完整的 300 米口径,能从北纬 52.2°(工作区紧贴锅南沿)观测到南纬 0.6°(工作区紧贴锅北沿)。如果愿意牺牲一点有效口径,则可以覆盖北纬 65.8° 到南纬 14.2° 的天空。FAST 光路,黄色虚线是抛物面工作区·图源南仁东《FAST项目介绍》观测脉冲星有什么实际应用?FAST 发现这么多脉冲星,那么观测脉冲星有什么实际应用?它的用处还真不少。当脉冲星发来的信号穿越星际时,会被沿途的电离气体阻碍,造成延迟。路程越长,电离气体越多,迟到越厉害。如果知道了脉冲星离我们有多远,再通过精密测量延迟的程度,就能反推信号沿途的星际介质分布情况。影响脉冲星信号的还有磁场,当电磁信号经过磁场时,它的偏振属性会被改变,磁场越强,改变幅度越大。测量信号的偏振,能够反推信号沿途的磁场分布情况。当超大质量天体扰动时空时,会产生引力波,改变脉冲星信号到达我们的时间。所以通过精确测量脉冲星周期的起伏,可以探测引力波。倘若能发现脉冲星-黑洞双星系统,观测一个稳定输出的天体和一个扭曲时空的天体如何搅拌乾坤,就更能检验广义相对论的预言,大大推动基础物理研究。脉冲星的自转周期非常稳定,有些在长期表现上堪与原子钟媲美,并且它们“永不断电”,可比原子钟皮实多了。将脉冲星和原子钟结合起来,可以建立长时间稳定的精准时间系统,甚至用于星际导航。旅行者“地球之声”金唱片左下方以14颗脉冲星指示太阳系的方位。图源NASA最后总结一下,FAST和它发现的脉冲星们,会帮助我们更好地认识宇宙,而这些发现,说不定有朝一日还能够帮助人类在星海中航行。 ... PC版: 手机版:

封面图片

天文学家在NGC 1851星团中发现了一个难以被分类的天体系统

天文学家在NGC 1851星团中发现了一个难以被分类的天体系统 中子星是宇宙中密度最大的天体。它们像原子核一样紧凑,却又像一座城市一样大,突破了我们对极端物质理解的极限。中子星越重,就越有可能最终坍缩成为密度更大的物体:黑洞。假定大质量伴星是一个黑洞,该系统的艺术印象图。最亮的背景恒星是它的轨道伴星射电脉冲星 PSR J0514-4002E。两颗恒星相距 800 万公里,每 7 天绕对方一周。图片来源:Daniëlle Futselaar ()这些天体的密度如此之大,引力如此之强,以至于它们的核心无论它们是什么都被事件视界永久地遮蔽在宇宙之外:完全黑暗的表面,光线无法从中逃脱。如果我们要了解中子星和黑洞之间临界点的物理学,就必须找到处于这一边界的天体。特别是,我们必须找到可以进行长时间精确测量的天体。而这正是我们所发现的一个既不明显是中子星也不明显是黑洞的天体。哈勃太空望远镜拍摄的球状星团 NGC 1851 的图像。图片来源:NASA、ESA 和 G. Piotto(帕多瓦大学);处理:Gladys Kober(NASA/美国天主教大学):Gladys Kober(美国国家航空航天局/美国天主教大学)当天文学家在星团NGC 1851的深处观察时,发现了一对特别的系统,这为我们了解宇宙中的极端物质提供了新的视角。这个系统由一颗毫秒脉冲星(一种快速旋转的中子星,它在旋转过程中会向整个宇宙发出无线电光束)和一个性质不明的巨大隐蔽物体组成。这个大质量天体是暗的,也就是说,从无线电到光学、X 射线和伽马射线波段,所有频率的光都看不到它。在其他情况下,这将使它无法被研究,但就在这里,毫秒脉冲星为我们提供了帮助。毫秒脉冲星类似于宇宙原子钟。它们的自旋非常稳定,可以通过探测它们产生的有规律的无线电脉冲进行精确测量。虽然脉冲星本质上是稳定的,但当脉冲星运动或其信号受到强引力场影响时,观测到的自旋会发生变化。通过观察这些变化,我们可以测量与脉冲星在轨道上运行的天体的特性。研究小组使用了位于南非卡鲁半沙漠的 MeerKAT 射电望远镜。图片来源:SARAO国际天文学家团队一直在使用南非的MeerKAT 射电望远镜对这个被称为 NGC 1851E 的星系进行观测。通过这些数据,我们可以精确地了解两个天体的轨道细节,显示出它们的最接近点会随着时间的推移而发生变化。爱因斯坦的相对论描述了这种变化,而变化的速度可以告诉我们系统中天体的总质量。观测结果表明,NGC 1851E 系统的重量几乎是太阳的四倍,暗伴星和脉冲星一样,是一个紧凑的天体比普通恒星的密度大得多。质量最大的中子星重约两个太阳质量,因此如果这是一个双中子星系统(众所周知并被研究过的系统),那么它就必须包含两颗迄今发现的最重的中子星。为了揭示伴星的性质,我们需要了解恒星系统中的质量是如何在恒星之间分配的。同样利用爱因斯坦的广义相对论,我们可以建立该系统的详细模型,发现伴星的质量介于太阳质量的 2.09 和 2.71 倍之间。这颗伴星的质量位于"黑洞质量鸿沟"之内。"黑洞质量鸿沟"介于最重的中子星和最轻的黑洞之间,前者被认为约为2.2个太阳质量,后者则是由恒星坍缩形成的,约为5个太阳质量。这一鸿沟中的天体的性质和形成是天体物理学中一个悬而未决的问题。那么,我们到底发现了什么呢?射电脉冲星 NGC 1851E 及其奇异伴星的潜在形成历史。资料来源:Thomas Tauris(奥尔堡大学 / MPIfR)一个诱人的可能性是,我们发现了一颗脉冲星,它正围绕着两颗中子星合并(碰撞)后的残骸运行。NGC 1851中恒星的密集排列使得这种不寻常的构造成为可能。在这个拥挤的恒星舞池中,恒星们将相互旋转,在无尽的华尔兹中交换舞伴。如果两颗中子星碰巧被抛得太近,它们的舞蹈就会以灾难性的方式结束。它们碰撞产生的黑洞可能比恒星坍缩产生的黑洞轻得多,因此黑洞可以在星团中自由游荡,直到找到华尔兹舞中的另一对舞者,然后毫不客气地插入其中在这一过程中将较轻的舞伴踢走。正是这种碰撞和交换机制,才有可能产生我们今天观察到的系统。对这个系统的研究还没有结束。我们的工作还在继续,以便最终确定伴星的真实性质,并揭示我们发现的是最轻的黑洞还是质量最大的中子星,或者两者都不是。在中子星和黑洞之间的边界,总是有可能存在一些新的、尚不为人知的天体物理天体。这一发现肯定会引起许多猜测,但已经明确的是,这一系统在了解宇宙中最极端环境下物质的真实情况方面有着巨大的前景。撰稿人:Ewan D. Barr - 马克斯-普朗克射电天文学研究所瞬态和脉冲星与 MeerKAT (TRAPUM) 合作项目科学家Arunima Dutta - 马克斯-普朗克射电天文学研究所射电天文学基础物理学研究部博士生本杰明-斯塔珀斯曼彻斯特大学天体物理学教授改编自最初发表在《对话》上的一篇文章。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

本周自然天文学的一篇新论文介绍了 J0529-4351 的情况,研究人员证实这是一颗类星体,里面包含了一个 170 亿倍太阳质量

本周自然天文学的一篇新论文介绍了 J0529-4351 的情况,研究人员证实这是一颗类星体,里面包含了一个 170 亿倍太阳质量的超大黑洞。 按照地球年算,它每年要吃掉 370 倍太阳质量的物质,相当于每天吃一个太阳。 via 匿名 标签: #太空 #星体 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

地球收到神秘信号:来自银河系第二亮的古老球状星团

地球收到神秘信号:来自银河系第二亮的古老球状星团 研究人员认为,这个信号来自一个中等质量黑洞,或者一颗脉冲星。如果是后者并不算太意外,但如果是前者,那将是天体物理学上的一次突破。中等质量黑洞是恒星级黑洞、超大质量黑洞之间的缺失一环,主流观点怀疑它藏在球状星团内部,但到目前为止,仍未发现球状星团内部存在中等质量黑洞的确凿证据。天体物理学家相信,超大质量黑洞是小黑洞一次次合并产生的,但需要找到一个中等质量黑洞,或者恰巧捕捉到小黑洞合并。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人