利用人工光合作用种植作物

利用人工光合作用种植作物 光合作用通常是指绿色植物吸收光能后,把二氧化碳和水转化为有机物(包括可供食用的部分)和氧气。但这个过程的能量效率非常低只有约1%的太阳能会被植物利用。近日,通过一种人工光合作用的方法,将二氧化碳和水转化为了食物。 研究人员利用的是他们自主开发的两步串联电解装置,以及两步电催化方法:首先将二氧化碳和水转化为醋酸盐,然后在黑暗环境下培养可制造食物的生物体,这些生物体能够通过“吃”醋酸盐来繁殖。其中,电能是利用太阳能电池板产生的。研究人员表示,这种有机-无机混合系统可以将能量转化效率(太阳能到“食物”)最多提升到植物的18倍。 他们还探究了利用该技术种植农作物的潜力,结果发现,豇豆、番茄、烟草、大米、油菜和绿豌豆都能在黑暗环境中,使用醋酸盐中的碳来生长。研究人员表示,这种人工光合作用的方式或可以用在城市中以便种植作物,或用于未来的太空探索。

相关推荐

封面图片

科学家在蓝藻中发现了一种新的酶功能 有望催生更好的碳捕捉作物

科学家在蓝藻中发现了一种新的酶功能 有望催生更好的碳捕捉作物 5月10日发表在《科学进展》(Science Advances)杂志上的这项研究展示了一种名为羧基体碳酸酐酶(CsoSCA)的酶以前未知的功能,这种酶存在于蓝藻(又称蓝绿藻)中,能最大限度地提高微生物从大气中提取二氧化碳的能力。蓝藻因其在湖泊和河流中的有毒繁殖而广为人知。但这些蓝绿色的细菌分布广泛,也生活在世界的海洋中。虽然它们会对环境造成危害,但研究人员将它们形容为"微小的碳超级英雄"。通过光合作用,它们每年在捕捉全球约 12% 的二氧化碳方面发挥着重要作用。蓝细菌是一组光合细菌,通常被称为"蓝藻",尽管它们是原核生物而不是真正的藻类。从海洋、淡水到裸岩,这些生物广泛存在于各种水生和陆地环境中。蓝藻以其进行含氧光合作用的能力而闻名,这意味着它们会产生氧气作为副产品,与植物类似。这一过程对地球上的生命至关重要,因为它为大气中氧气的产生做出了重要贡献。第一作者、澳大利亚国立大学博士研究员萨沙-普尔斯福德(Sacha Pulsford)介绍了这些微生物捕获碳的惊人效率。Pulsford女士说:"与植物不同,蓝藻有一个称为二氧化碳浓缩机制(CCM)的系统,它能固定大气中的碳并将其转化为糖,其速度明显快于标准植物和农作物物种。"CCM 的核心是被称为羧基体的大型蛋白质区。这些结构负责封存二氧化碳,容纳 CsoSCA 和另一种叫做 Rubisco 的酶。CsoSCA 和 Rubisco 两种酶协同工作,显示出 CCM 的高效特性。CsoSCA 的作用是在羧基体内产生局部高浓度的二氧化碳,然后 Rubisco 可以吞噬这些二氧化碳,并将其转化为糖分供细胞食用。论文的主要作者、英国国立大学的本-朗博士说:"到目前为止,科学家们还不清楚CsoSCA酶是如何受控的。我们的研究重点是揭开这个谜团,尤其是在遍布全球的一个主要蓝藻群中。我们的发现完全出乎意料。CsoSCA酶随着另一种名为RuBP的分子的旋律起舞,RuBP像开关一样激活了它。把光合作用想象成做三明治。空气中的二氧化碳是馅料,但光合作用细胞需要提供面包。这就是 RuBP。""就像做三明治需要面包一样,二氧化碳转化为糖的速度取决于 RuBP 的供应速度。CsoSCA酶向Rubisco提供二氧化碳的速度取决于RuBP的含量。当RuBP足够多时,酶就会开启。但是,如果细胞中的 RuBP 用完了,酶就会关闭,从而使系统高度调整和高效。令人惊讶的是,CsoSCA酶一直蕴藏在大自然的蓝图中,等待着被发现"。科学家们说,工程作物在捕获和利用二氧化碳方面的效率更高,这将大大提高作物产量,同时减少对氮肥和灌溉系统的需求,从而极大地促进农业发展,它还可以确保世界粮食系统更能适应气候变化。Pulsford 女士说:"了解 CCM 的工作原理不仅能丰富我们对地球生物地球化学基本自然过程的认识,还能指导我们为世界面临的一些最大的环境挑战制定可持续的解决方案。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

革命性三维快照揭示光合作用背后的“秘密机器”

革命性三维快照揭示光合作用背后的“秘密机器” 图片显示的是植物 RNA 聚合酶 PEP 的高分辨率三维模型,它在光合作用中发挥着核心作用。图片来源:Paula Favoretti Vital do Prado 和 Johannes Pauly / MPI-NAT, UMG没有光合作用,就没有空气可呼吸光合作用是地球上所有生命的基础。这一复杂的过程使植物能够利用太阳光能将二氧化碳和水转化为化学能和氧气。这一转化过程在叶绿体中进行,叶绿体是光合作用的核心。叶绿体是在进化过程中形成的,当时今天植物细胞的祖先吸收了一种光合蓝藻。随着时间的推移,这种细菌越来越依赖于它的"宿主细胞",但仍保留了一些重要的功能,如光合作用和细菌基因组的一部分。因此,叶绿体仍然拥有自己的DNA,其中包含"光合作用机器"关键蛋白质的蓝图。从 PEP 到能源马克斯-普朗克多学科科学研究所(MPI)研究组组长、哥廷根大学医学中心教授、哥廷根"多尺度生物成像"(MBExC)英才集群成员豪克-希伦(Hauke Hillen)教授博士解释说:"一种独特的分子复制机器,即名为 PEP 的 RNA 聚合酶,从叶绿体的遗传物质中读取遗传指令。希伦强调说,它对于激活光合作用所需的基因至关重要。没有正常运作的 PEP,植物就不能进行光合作用,就会变成白色而不是绿色。"不仅复制过程复杂,复制机器本身也很复杂:它由一个多亚基核心复合体(其蛋白质部分在叶绿体基因组中编码)和至少 12 个相关蛋白质(称为 PAPs)组成。植物细胞的核基因组为这些蛋白提供了蓝图。汉诺威莱布尼茨大学植物学研究所教授 Thomas Pfannschmidt 博士说:"到目前为止,我们已经能够从结构和生物化学角度描述叶绿体复制机的一些单独部分,但我们还缺乏对其整体结构和单个 PAPs 功能的精确了解。"3D 详细快照通过密切合作,豪克-希伦(Hauke Hillen)和托马斯-普范施密特(Thomas Pfannschmidt)领导的研究人员现在首次成功地以 3.5 埃(比毫米小 3500 万倍)的分辨率对 19 个亚基的 PEP 复合物进行了三维可视化。"我们从植物研究的典型模式植物白芥子中分离出了完整的 PEP,"Pfannschmidt 团队的成员、现发表在《分子细胞》(Molecular Cell)杂志上的这项研究的第一作者之一弗雷德里克-阿伦斯(Frederik Ahrens)介绍说。随后,科学家们利用冷冻电子显微镜创建了由 19 个部分组成的 PEP 复合物的详细三维模型。为此,研究人员对样本进行了超高速速冻。然后,研究人员从多个角度对复制机进行了数千次拍摄,直至原子级别,并通过复杂的计算机计算将它们组合成一个整体图像。"结构快照显示,PEP 核心与其他 RNA 聚合酶(如细菌或高等细胞的细胞核)中的核心相似。然而,它包含叶绿体特有的特征,这些特征介导了与 PAPs 的相互作用。后者只有在植物中才能发现,而且它们的结构非常独特,"国际植物研究所博士生、MBExC 赫莎-斯波纳学院成员、该研究的第一作者 Paula Favoretti Vital do Prado 解释说。科学家们已经假定,PAPs 在读取光合作用基因的过程中发挥着各自的功能。"我们可以看到,这些蛋白质以一种特殊的方式排列在 RNA 聚合酶核心周围。根据它们的结构,PAPs很可能以各种方式与核心复合体相互作用,并参与基因读取过程,"Hillen补充说。了解光合作用的演变研究小组还利用数据库寻找进化线索。他们希望找出在其他植物中观察到的复制机结构是否相似。Pfannschmidt 说:"我们的研究结果表明,PEP 复合物的结构在所有陆生植物中都是相同的。关于叶绿体 DNA 复制过程的新发现有助于我们更好地了解光合作用机器生物发生的基本机制。这些发现对未来的生物技术应用也很有价值。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家捕捉到光合作用“从水到氧”过程

科学家捕捉到光合作用“从水到氧”过程 日本冈山大学教授沈建仁等人成功捕捉到了负责植物光合作用的蛋白质中存在的催化剂吸收水分子的瞬间。研究报告发表在本周出版的《》期刊上。光合作用是指植物和藻类利用阳光分解水和二氧化碳、产生能量和氧气的反应。名为“光系统Ⅱ”的约 20 个蛋白质与叶绿素组成的复合体吸收光能,从水分子中分离电子和氢离子,形成氧气分子的过程是光合作用的开始。研究团队此前捕捉到水分子被光系统Ⅱ吸收之后的情形,但不知道这一过程中发生了什么。研究团队在 X 射线激光设施“SACLA”中,利用持续数十飞秒(1 秒的 1000 万亿分之一)的 X 射线进行闪光拍摄,捕捉到了光系统Ⅱ蛋白质的快速活动。用可见光照射蛋白质,在促进反应的同时,通过 X 射线照射分析了吸收水分子后立体结构发生变化的情形。 沈教授表示,今后将对光系统Ⅱ的最后一步,也就是出现氧分子的过程进行分析。如果能解析植物的光合作用,并应用其原理,或有望实现人工光合作用。来源 , 图:圆形的大型放射光设施“SPring-8”和直线型的X射线自由电子激光设施“SACLA” 频道:@kejiqu 群组:@kejiquchat

封面图片

太阳光制甲醇:利用铜和氮化碳实现革命性的二氧化碳转化

太阳光制甲醇:利用铜和氮化碳实现革命性的二氧化碳转化 研究人员开发出一种利用铜和纳米氮化碳晶将二氧化碳高效转化为甲醇的阳光动力工艺,标志着向可持续燃料生产和减少二氧化碳迈出了重要一步。上图为测试催化剂将二氧化碳转化为甲醇的反应器。资料来源:诺丁汉大学效率和选择性的挑战在光催化过程中,光线照射到半导体材料上会激发电子,使电子穿过材料与二氧化碳和水发生反应,从而产生各种有用的产品,包括作为绿色燃料的甲醇。尽管最近取得了一些进展,但这一过程仍存在效率和选择性不足的问题。二氧化碳是导致全球变暖的最大因素。虽然可以将二氧化碳转化为有用的产品,但传统的热法依赖于化石燃料中的氢气。利用可持续的太阳能和无处不在的丰富水资源,开发基于光催化和电催化的替代方法非常重要。改进催化的纳米级控制诺丁汉大学化学学院研究员马达萨米-坦加穆图(Madasamy Thangamuthu)博士是研究小组的共同负责人:"光催化使用的材料种类繁多。光催化剂吸收光并高效分离电荷载流子非常重要。在我们的方法中,我们在纳米尺度上控制材料。我们开发了一种新形式的氮化碳,它具有结晶纳米级畴,能够与光进行高效互动,并实现充分的电荷分离。光将二氧化碳转化为甲醇(燃料)的过程。资料来源:诺丁汉大学研究人员设计了一种将氮化碳加热到所需结晶度的工艺,最大限度地提高了这种材料在光催化方面的功能特性。利用磁控溅射技术,他们在无溶剂过程中沉积了原子铜,使半导体和金属原子得以亲密接触。令人惊喜的效率提升在诺丁汉大学化学学院开展实验工作的博士生塔拉-勒梅尔(Tara LeMercier)说:"我们测量了光产生的电流,并以此作为判断催化剂质量的标准。即使不加铜,新型氮化碳的活性也比传统氮化碳高 44 倍。然而,出乎我们意料的是,每 1 克氮化碳中只需添加 1 毫克铜,效率就提高了四倍。最重要的是,选择性从甲烷(另一种温室气体)变成了甲醇(一种宝贵的绿色燃料)"。诺丁汉大学化学学院的 Andrei Khlobystov 教授说:"二氧化碳价值化是英国实现净零排放目标的关键。确保我们用于这一重要反应的催化剂材料的可持续性至关重要。这种新型催化剂的一大优势在于它由可持续元素组成碳、氮和铜这些元素在我们的星球上都非常丰富。"本发明是深入了解二氧化碳转化过程中光催化材料的重要一步。它开辟了一条创造高选择性和可调整催化剂的途径,通过在纳米尺度上控制催化剂,可以调高所需的产物。编译自:ScitechDaily ... PC版: 手机版:

封面图片

革命性反应器利用粉煤灰将二氧化碳转化为有价值的矿物质

革命性反应器利用粉煤灰将二氧化碳转化为有价值的矿物质 可持续废物管理和二氧化碳封存方面取得了重大进展,研究人员开发出了利用粉煤灰颗粒使二氧化碳矿化的反应器。这种创新方法有望在重新利用工业副产品的同时,为温室气体排放这一关键问题提供可持续的持久解决方案。随着工业化进程的不断推进,二氧化碳排放量也随之激增,而二氧化碳是全球变暖的主要驱动因素。现有的碳捕集、利用和封存(CCUS)技术正努力解决效率和成本问题。粉煤灰作为煤炭燃烧的副产品,为二氧化碳矿化提供了一条前景广阔的途径,既能变废为宝,又能减少排放。然而,现有的反应器设计很难在气体-颗粒相互作用和运行效率之间实现理想的协同效应。这些障碍凸显了对创新反应器配置和运行微调进行深入研究的必要性。反应堆创新研究上海交通大学关于粉煤灰矿化反应器的前沿研究成果于 2024 年 5 月 7 日发表在《储能与节能》杂志上。该研究经过缜密的计算优化,揭示了一种开创性的反应器设计,有望提高二氧化碳捕集和矿化的效率。该研究引入了两种反应器设计,每种设计都经过精心设计,通过粉煤灰实现二氧化碳矿化,并利用计算流体动力学进行优化。撞击式入口设计因其能够放大界面相互作用、延长颗粒停留时间并显著提高矿化率而脱颖而出。图表摘要。图片来源:Duoyong Zhang 等人反之,四边形旋转式进气口可提供流线型气流,实现全面混合并提高反应效率。对操作参数烟气速度、载气速度和颗粒速度的严格研究得出了最佳范围,有望将反应器的性能推向新的高度,确保高效的二氧化碳矿化和反应后的相分离。该研究的首席研究员王立伟博士说:"我们的发现标志着碳捕集与利用技术的重大飞跃。通过改进反应器设计和运行参数,我们实现了二氧化碳矿化效率的大幅飞跃。这项工作不仅对可持续废物管理大有裨益,而且还提出了一项减少工业碳排放的务实战略,与全球气候行动倡议相一致。这项研究对燃煤发电厂有着深远的影响,它为发电厂产生的粉煤灰提供了一种变革性的用途。通过将这种副产品转化为二氧化碳矿化物,这项研究为减少碳排放和减轻粉煤灰处理对环境造成的负担铺平了道路。这项研究的应用范围非常广泛,为废物管理和二氧化碳封存提供了一个和谐的解决方案,很有可能重新定义 CCUS 技术方法。编译自/scitechdaily ... PC版: 手机版:

封面图片

用糖制成的廉价催化剂具有消灭甚至再利用二氧化碳的能力

用糖制成的廉价催化剂具有消灭甚至再利用二氧化碳的能力 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 随着碳捕集技术的最新进展,燃烧后碳捕集正在成为帮助解决全球气候变化危机的一个可行方案。但如何处理捕获的碳仍然是一个悬而未决的问题。新型催化剂有可能提供一种解决方案,通过将其转化为更有价值的产品来处理这种强效温室气体。这项研究将发表在 5 月 3 日出版的《科学》杂志上。这项研究的共同负责人、西北大学的 Milad Khoshooei 说:"即使我们现在停止排放二氧化碳,由于过去几个世纪的工业活动,我们大气中的二氧化碳仍然会过剩。这个问题没有单一的解决方案。我们需要减少二氧化碳的排放,并寻找新的方法来降低大气中已经存在的二氧化碳浓度。我们应该利用所有可能的解决方案。"该示意图显示了制造催化剂并用其转化二氧化碳的全过程。资料来源:Milad Khoshooei"我们不是第一个将二氧化碳转化为另一种产品的研究小组,"该研究的资深作者、西北大学的 Omar K. Farha 说。"然而,要使这一工艺真正实用,催化剂必须满足几个关键标准:经济性、稳定性、易生产性和可扩展性。平衡这四个要素是关键。幸运的是,我们的材料在满足这些要求方面表现出色"。法尔哈是碳捕集技术方面的专家,现任西北大学温伯格文理学院查尔斯-莫里森(Charles E. and Emma H. Morrison)化学教授。Khoshooei 在加拿大卡尔加里大学攻读博士学位时开始这项工作,现在是 Farha 实验室的博士后研究员。新型催化剂背后的秘密是碳化钼,这是一种硬度极高的陶瓷材料。与许多其他需要昂贵金属(如铂或钯)的催化剂不同,钼是一种廉价、非贵重、地球上富集的金属。要将钼转化为碳化钼,科学家们需要一种碳源。他们在一个意想不到的地方发现了廉价的选择:储藏室。令人惊讶的是,糖几乎家家户户都有的白色颗粒状糖成为了一种廉价、方便的碳原子来源。Khoshooei 说:"在我尝试合成这些材料的每一天,我都会从家里带糖到实验室。与催化剂常用的其他类材料相比,我们的材料价格低廉得令人难以置信"。在测试催化剂时,Farha、Khoshooei 和他们的合作者对催化剂的成功留下了深刻印象。催化剂在环境压力和高温(300-600摄氏度)条件下工作,以 100% 的选择性将CO2转化为 CO。高选择性意味着催化剂只对二氧化碳起作用,而不会破坏周围的材料。换句话说,工业界可以将催化剂用于大量捕集气体,并选择性地只针对二氧化碳。此外,催化剂还具有长期稳定性,即保持活性,不会降解。法尔哈说:"在化学中,催化剂在几个小时后失去选择性并不罕见。但是,在苛刻的条件下使用 500 小时后,其选择性并没有改变。"这一点尤其引人注目,因为二氧化碳是一种稳定而顽固的分子。"转化二氧化碳并不容易,"Khoshooei 说。"二氧化碳是一种化学性质稳定的分子,我们必须克服这种稳定性,而这需要大量的能量。"开发碳捕集材料是法尔哈实验室的主要工作。他的研究小组开发的金属有机框架(MOFs)是一类高孔隙率的纳米级材料,法尔哈将其比喻为"精密且可编程的洗浴绵"。法尔哈探索 MOFs 的各种应用,包括直接 从空气中提取二氧化碳。现在,法尔哈说,MOFs 和这种新型催化剂可以共同在碳捕集与封存中发挥作用。法尔哈说:"在某些时候,我们可以使用 MOF 捕获二氧化碳,然后再使用催化剂将其转化为更有益的物质。利用两种不同材料进行两个连续步骤的串联系统可能是未来的发展方向"。"这可以帮助我们回答'如何处理捕获的二氧化碳'这一问题"。Khoshooei 补充道。"目前的计划是将其封存在地下。但地下水库必须满足许多要求,才能安全、永久地储存二氧化碳。我们希望设计一种更通用的解决方案,可以在任何地方使用,同时增加经济价值。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人