从小行星“取土”培育植物 日专家太空农场设想或可推行太空科学家近日在探索移居太空的设想上取得进展。

None

相关推荐

封面图片

从小行星“取土”培育植物 日专家太空农场设想或可推行

从小行星“取土”培育植物 日专家太空农场设想或可推行 太空科学家近日在探索移居太空的设想上取得进展。日本冈山大学特聘教授中村英三提出,以太空中漂浮的无数小行星上的土壤当“肥料”,使在星球上建太空农场的设想或可成真。 综合《日本经济新闻》和新华社报道,2023年12月,中村英三在探讨移居月球方法的国际会议上,提出的月球农场构想备受关注。 中村英三认为,月球砂土比地球土壤所含的水、碳和其他养分要少,植物栽培和生物生存都很困难。美国佛罗里达大学曾进行过测试,在月球砂土中栽培拟南芥,尽管种子发芽了,但过了数周便长势不良。 但小行星上的土壤或可被改良为“肥料”。据日本《朝日新闻》网站报道,2020年“隼鸟2号”探测器将小行星“龙宫”的砂土样品带回地球。分析显示其中氢、碳和有机物的占比“比地球土壤中的占比高处3至4位数”。 中村英三团队利用模拟“龙宫”砂土成分的土壤和水,成功栽培了芝麻菜和水菜。据悉,这些植物用了约一个月到一个半月的时间,生长到可食用的大小。 但要实现太空农场的构想,科学家还必须认真调查小行星土壤中的盐分和重金属含量,以及宇宙射线可能带来的影响。 根据中村英三等人设想,为避免太空辐射的影响,月球农场可设计成封闭空间,也可利用发光二极管等人造光培育植物。而在建造火星农场时,火星大气中富含的二氧化碳可用于植物不可或缺的光合作用。 不过,国际宇航联空间运输委员会副主席杨宇光指出,尽管有些小行星的土壤中可能富含非常多的营养成分,但在小行星上采集土壤目前仍面临技术和成本两大挑战。例如,“隼鸟2号”耗资1.5亿美元,采集的样品也只有5.4克。而且,如何克服小行星上的微重力,让探测器更好地降落其上也面临极大的挑战。 2024年3月10日 11:27 AM

封面图片

从小行星“取土”建太空农场,靠谱吗?

从小行星“取土”建太空农场,靠谱吗? 国际宇航联空间运输委员会副主席杨宇光对科技日报记者表示:“利用小行星上可能富含营养的土壤建造太空农场,这是一个很有趣的想法,但面临技术和成本两方面的难题。”“隼鸟2号”带回的“龙宫”小行星的土壤样本。图片来源:日本宇宙航空研究开发机构小行星土壤做“肥料”俗话说,春种一粒粟,秋收万颗子。但并非仅向月球和火星的砂土中撒种,植物就能茁壮成长。杨宇光说:“植物生长离不开水、碳和其他养分等成分。”中村英三认为,月球砂土比地球土壤所含的水、碳和其他养分要少,植物栽培和生物生存都很困难。美国佛罗里达大学曾进行过测试,在月球砂土中栽培拟南芥,尽管种子发芽了,但过了数周便长势不良。至于火星,杨宇光介绍说:美国国家航空航天局(NASA)此前称,其火星勘测轨道飞行器在火星土壤中发现了高氯酸盐。而高氯酸盐可谓是“植物杀手”,会降低植物叶片中叶绿素的含量,还会降低植物根系的氧化能力,让植物无法吸收足够的营养。但小行星上的土壤或可被改良为“肥料”。据日本《朝日新闻》网站报道,2020年“隼鸟2号”探测器将小行星“龙宫”的砂土样品带回地球。分析显示其中氢、碳和有机物的占比高于地球土壤中的占比。中村英三团队利用模拟“龙宫”砂土成分的土壤和水,成功栽培了芝麻菜和水菜。找出合适的小行星不同种类的小行星砂土所含成分不同,科学家必须找出能提供“肥料”的小行星,但太空中小行星的数量太多了。NASA的统计数据显示,目前科学家已经发现的小行星约有130万个,其中靠近地球和月球的天体超过3.2万个。随着观测技术的进步,未来会有更多小行星闯入人们的视野。但是,含有像“龙宫”那样土壤成分的、已被详细查明的小行星数量不足20个。英国《新科学家》杂志的报道指出,已知碳质或“C型”小行星上富含有机化合物。新西兰林肯大学的迈克尔·毛特纳直接用来自“C型”小行星的材料种植出了可食用的植物。毛特纳指出,这些小行星的陨石坠落到地球上,他只是把陨石磨碎,然后加水,种在其中的植物就能生长了。那么,如何将小行星上的砂土或其他营养物质搬运到月球或者火星上呢?如果只需一些较少数量的砂土,利用“隼鸟2号”和“冥王号”探测器的样品回收技术即可。但如需要大量“肥料”土壤,则可能要“捕捉”整个小行星。NASA过去曾提出两种“捕星术”:一是在太空船上安装一个直径约15米的“大袋子”,像网兜捕捉蝴蝶那样兜住小行星,将其运送到月球附近。二是派一艘太空船飞到较大小行星旁,利用机器爪从其身上“掐下”一块带走。面临极大不确定性要实现太空农场构想,科学家还必须认真调查小行星土壤中的盐分和重金属含量,以及宇宙射线可能带来的影响。中村英三等人设想,为避免太空辐射的影响,月球农场可设计成封闭空间,也可利用发光二极管等人造光培育植物。而在建造火星农场时,火星大气中富含的二氧化碳可用于植物不可或缺的光合作用。杨宇光强调,就像在地球上建立南极科考站一样,在月球或火星上建造永久性的科考基地,对于宇宙探索和了解地球本身都至关重要。由于月球或火星基地一般只有少数科考人员,大多数用于培育植物的土壤可从月球或火星原位获取,经过处理后可适合植物栽培。如果能够原位利用资源,那将是最好的选择。杨宇光进一步表示,尽管有些小行星的土壤中可能富含非常多的营养成分,但在小行星上采集土壤目前仍面临技术和成本两大挑战。例如,“隼鸟2号”耗资1.5亿美元,采集的样品也只有5.4克。而且,如何克服小行星上的微重力,让探测器更好地降落其上也面临极大的挑战。说起成本,杨宇光说:“即便人类的运载火箭运输成本能够成百倍降低,小行星与月球或火星之间的物资运输依然复杂且昂贵。与从地球直接运送相比,从小行星获取这些组分在成本上是否合算,具有极大的不确定性。” ... PC版: 手机版:

封面图片

科学家解码小行星"龙宫"的彗星有机物质

科学家解码小行星"龙宫"的彗星有机物质 研究小组成员包括东北大学研究生院理学研究科地球科学系助理教授 Megumi Matsumoto。他们的详细研究结果最近发表在《科学进展》(Science Advances)杂志上 。(左)在"龙宫"样本表面发现的熔体飞溅。熔体飞溅呈圆形。(右图)熔融喷溅物的 CT 切片图像,显示其内部存在大量空隙。资料来源:Megumi Matsumoto et al.小行星"龙宫"没有保护大气层,其表层直接暴露在太空中。太空中细小的行星际尘埃会撞击小行星表面,导致小行星表面物质成分发生变化。松本和她的同事们发现,样本表面含有小的"熔体飞溅",大小从5微米到20微米不等。这些熔体飞溅是彗星尘埃的微流星体轰击"龙宫"时产生的。松本说:"我们的三维 CT 成像和化学分析显示,熔体飞溅物主要由硅酸盐玻璃组成,其中有空隙和小的球形硫化铁夹杂物。熔体飞溅的化学成分表明,"龙宫"的含水硅酸盐与彗星尘埃混合在一起。"在熔融喷溅物中发现的碳质材料。碳质材料呈现海绵状质地,含有小的硫化铁夹杂物。这与彗星尘埃中发现的原始有机物类似。资料来源:Megumi Matsumoto et al.在撞击引起的加热和快速冷却过程中,"龙宫"表面物质和彗星尘埃的混合和熔化形成了熔体飞溅。这些空隙相当于从含水硅酸盐中释放出来的水蒸气,随后被熔体飞溅物捕获。分析还揭示了熔体飞溅物中具有丰富纳米孔隙和硫化铁夹杂物的小型碳质材料。碳质材料在质地上类似于彗星尘埃中的原始有机物,但它们缺乏氮和氧,因此在化学性质上与有机物不同。松本补充说:"我们认为,碳质材料是在撞击引起的加热过程中,通过氮和氧等挥发性物质的蒸发,由彗星有机物形成的。这表明彗星物质是从外太阳系被传送到近地区域的,这些有机物质可能是生命的小种子,曾经从太空被传送到地球。"展望未来,研究小组希望通过对"龙宫"样本的研究,找到更多的熔体飞溅物,从而进一步了解原始太空物质流入地球的情况。编译来源:ScitechDailyDOI: 10.1126/sciadv.adi7203 ... PC版: 手机版:

封面图片

公民科学家和人工智能利用哈勃发现隐藏的小行星

公民科学家和人工智能利用哈勃发现隐藏的小行星 这张哈勃太空望远镜拍摄的条状螺旋星系 UGC 12158 的图像看起来像是有人用白色记号笔涂抹过的。实际上,这是一颗前景小行星在哈勃视场中移动时的时间曝光组合,它干扰了对该星系的观测。对星系进行了多次曝光,这就是虚线图案中的证据。由于视差的原因,小行星呈现出一条弯曲的轨迹:因为哈勃并不是静止的,而是围绕地球运行的,这就造成了一种错觉,即这颗微弱的小行星正在沿着弯曲的轨迹游动。这颗未知的小行星位于太阳系的小行星带内,因此比背景星系距离哈勃近 10 万亿倍。这类数据对天文学家普查太阳系中的小行星群非但不会造成困扰,反而非常有用。图片来源:NASA、ESA、Pablo García Martín(UAM);图片处理:Joseph DePasquale(ST:Joseph DePasquale(STScI);鸣谢:Alex Filippenko(加州大学伯克利分校)最近,天文学家利用美国国家航空航天局哈勃太空望远镜拍摄的大量存档图像,目测到了一群在很大程度上从未见过的小行星的踪迹。这次寻宝活动需要浏览 19 年间拍摄的 37,000 张哈勃图像。结果发现了 1,701 条小行星轨迹,其中 1,031 个小行星以前未编入目录。在这些未编入目录的小行星中,约有 400 颗的大小在 1 公里以下。这张图是根据哈勃太空望远镜的档案数据绘制的,这些数据被用来识别出一群在很大程度上从未见过的非常小的小行星的轨迹。这些小行星并非预定目标,而是哈勃图像中的背景恒星和星系。这次全面的寻宝活动需要浏览跨度长达 19 年的 37,000 张哈勃图像。这是通过"公民科学"志愿者和人工智能算法完成的。结果发现了 1701 条以前未发现的小行星轨迹。资料来源:Pablo García Martín(UAM),Elizabeth Wheatley(STScI)来自世界各地的志愿者被称为"公民科学家",他们为小行星的识别做出了贡献。专业科学家将志愿者的努力与机器学习算法相结合,对小行星进行了识别。研究人员说,这代表了一种在跨越数十年的天文档案中寻找小行星的新方法,可以有效地应用于其他数据集。"我们正在更深入地观察较小的主带小行星群。"第一作者、西班牙马德里自治大学的巴勃罗-加西亚-马丁(Pablo García Martín)说:"看到如此多的候选天体,我们感到非常惊讶。这个群体的存在曾有过一些暗示,但现在我们通过使用整个哈勃档案获得的随机小行星群体样本证实了这一点。这对于深入了解太阳系的进化模型非常重要。"这个随机的大样本为了解小行星带的形成和演变提供了新的视角。发现大量小行星的观点倾向于认为,这些小行星是较大小行星的碎片,它们像被砸碎的陶器一样发生碰撞并四分五裂。这是一个长达数十亿年的研磨过程。关于较小碎片存在的另一种理论是,它们是在数十亿年前以这种方式形成的。但是,没有任何可以想象的机制可以阻止它们从太阳周围行星形成的环星盘中聚集尘埃,从而滚雪球般地变大。西班牙马德里欧洲太空天文中心的布鲁诺-梅林(Bruno Merín)说:"碰撞会产生某种特征,我们可以用它来检验目前的主带群体。"这张哈勃太空望远镜拍摄的条状螺旋星系 UGC 12158 的图像看起来像是有人用白色记号笔涂抹过的。实际上,这是一颗前景小行星在哈勃视场中移动时的时间曝光组合,它干扰了对该星系的观测。对星系进行了多次曝光,这就是虚线图案中的证据。由于视差的原因,小行星呈现出一条弯曲的轨迹:哈勃并不是静止的,而是围绕地球运行的,这就造成了一种错觉,即这颗微弱的小行星正沿着弯曲的轨迹游动。这颗未知的小行星位于太阳系的小行星带内,因此比背景星系距离哈勃近 10 万亿倍。这类数据对天文学家普查太阳系中的小行星群非但不会造成困扰,反而非常有用。资料来源:NASA、ESA、Pablo García Martín (UAM)由于哈勃围绕地球的快速轨道,它可以通过哈勃曝光中的小行星痕迹捕捉到游荡的小行星。从地球上的望远镜观看,小行星会在画面上留下一道痕迹。小行星在哈勃曝光的照片中以清晰无误的弯曲轨迹出现,从而"轰炸"了哈勃曝光。当哈勃围绕地球移动时,它在观测小行星时会改变视角,而小行星也会沿着自己的轨道移动。通过了解哈勃在观测过程中的位置和测量条纹的曲率,科学家可以确定小行星的距离,并估算出它们的轨道形状。被捕获的小行星大多位于火星和木星轨道之间的主带。它们的亮度由哈勃的灵敏相机测量。将它们的亮度与其距离相比较,就能估算出它们的大小。调查中最暗的小行星的亮度大约是人眼所能看到的最暗恒星亮度的四千万分之一。梅林说:"小行星的位置会随着时间的变化而变化,因此你不能仅仅通过输入坐标来找到它们,因为在不同的时间,它们可能不在那里。作为天文学家,我们没有时间去查看所有的小行星图像。因此,我们萌生了与 1 万多名公民科学志愿者合作的想法,以浏览庞大的哈勃档案。"2019年,一个国际天文学家小组启动了哈勃小行星猎手(Hubble Asteroid Hunter)项目,这是一个公民科学项目,旨在识别哈勃档案数据中的小行星。该倡议由欧洲科学技术中心(ESTEC)和欧洲空间天文中心科学数据中心(ESDC)的研究人员和工程师与世界上最大、最受欢迎的公民科学平台Zooniverse平台和Google合作开发。共有 11482 名公民科学志愿者提供了近 200 万个识别数据,然后为基于人工智能的小行星自动识别算法提供了训练集。这种开创性的方法可以有效地应用于其他数据集。该项目下一步将探索以前未知的小行星条纹,以确定它们的轨道特征并研究它们的特性,如自转周期。由于这些小行星条纹大多是哈勃在多年前捕捉到的,因此现在无法对它们进行跟踪,以确定它们的轨道。研究结果发表在《天文学与天体物理学》杂志上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

俄罗斯卫星通讯社俄科学家发现的小行星不会造成危险 ||

封面图片

科学家们现在可以申请NASA获取的小行星贝努(Bennu)样本以供研究

科学家们现在可以申请NASA获取的小行星贝努(Bennu)样本以供研究 来自小行星贝努的岩石和尘埃的一个容器的俯视图,硬件刻度以厘米为单位。天体材料高级成像和可视化(AIVA)项目创意负责人艾丽卡-布卢门菲尔德(Erika Blumenfeld)和AIVA项目管理负责人乔-艾伯索尔德(Joe Aebersold)使用手动高分辨率精密摄影和半自动对焦堆叠程序拍摄了这张照片。结果是一张可以放大显示极端细节的样本图像。图片来源:NASA/Erika Blumenfeld 和 Joseph Aebersold位于休斯敦的美国国家航空航天局约翰逊航天中心(NASA's Johnson Space Center)的管理团队发布了OSIRIS-REx样本目录,详细介绍了全球科学家可以申请用于研究的小型岩石和尘埃。约翰逊公司天体材料研究与探索科学部(ARES)天体材料获取与保存办公室主任杰玛-戴维森(Jemma Davidson)说:"这很令人兴奋,因为在此之前,除了在会议上展示过的东西之外......真的没有人在保存或任务团队之外有机会看到贝努样本的细节。"OSIRIS-REx 从小行星贝努采集了 4.29 盎司(121.6 克)的物质;这是有史以来在太空中采集的最大的小行星样本,超过了任务质量要求的两倍。一些样本已经分发给 OSIRIS-REx 样品分析小组的成员,他们发现了有机分子以及含磷和水的矿物质的证据,这些证据加在一起可能表明在这些岩石中可能发现了生命所必需的构件。OSIRIS-REx 在原始的 OSIRIS-REx 实验室外的 H2-OREx 暂存区的综合处理和工程团队。从左到右,从前到后:Rachel Funk、Carla Gonzalez、Nicole Lunning、Jannatul Ferdous、Neftali Hernandez、Mari Montoya、Melissa Rodriguez、Curtis Calva、Julia Plummer、Kimberly Allums-Spencer、Gabriel Lugo、Christopher Snead、Sal Martinez 和 Wayland Connelly。资料来源:美国国家航空航天局/詹姆斯-布莱尔目录详细列出了每个样本的图像、重量和描述。科学家可以使用该数据库查找贝努样本中可以支持其研究的具体碎片。为此,他们需要提交一份理由充分的科学建议书,说明他们为什么想要申请特定的碎片、他们将如何进行分析、他们希望了解什么以及他们的分析可能会对样本产生什么影响。提交建议书的详细指南可在ARES 库藏网站上的样本申请表中找到。申请将由天体材料分配审查委员会(AARB)的一个小组进行审查,该小组的专家负责审查 NASA 所有天体材料的样本申请。第一轮申请的截止时间是美国中部时间2024年6月25日下午5点。这是 2024 年申请贝努样本的唯一机会,但随后几年将有春季和秋季的申请机会。戴维森说:"建立这个样本目录,并在样本返回后六个月内将其提供给科学界,这是一项了不起的成就。整理团队付出了令人难以置信的努力,坚持不懈地克服各种挑战,终于推出了样本目录。这是该团队的一项重大成就。这对任务来说是一个巨大的里程碑,对更广泛的样本分析界来说也是一件大事。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人