挑战现有模型 中国科学家发现宇宙更年轻

挑战现有模型 中国科学家发现宇宙更年轻 在标准宇宙学模型中,先形成小结构,然后逐级并合,形成越来越大的结构。大质量星系群和星系团作为宇宙中最大的结构,其维里化状态反映了宇宙演化的状态。研究团队测量了813个大质量星系群周围卫星星系对的动力学,特别侧重于沿视线方向的运动相关性。结果发现,分布在中央星系两侧的卫星星系对,相对于中央星系的视向速度偏移,更倾向具有相同方向,而卫星星系对同向运动通常表征了它们沿着大尺度结构被吸积的过程。卫星星系对同向运动的超出在基于标准宇宙学模型的数值模拟中也被预测到,但其比例要远低于观测结果。观测数据相比于两个数值模拟的预测值,分别出现了4.1σ和3.6σ的超出。观测和理论预测之间的巨大差异,表明在真实的宇宙中,大质量星系群比根据宇宙微波背景辐射推测的形成更晚,因此也预示了更年轻的宇宙,倾向于支持比PLANCK结果更高的哈勃常数,更接近于近邻宇宙中对哈勃常数的测量结果,这挑战了目前的宇宙学模型。另一方面,目前数值模拟中的重子物质过程偏差,也提供了一种可能的解释。未来需要结合理论和观测的进一步发展,才能最终确定宇宙的年龄。上图中,左侧是往大质量星系群中掉落的星系,其中红色区域为一个大质量星系群,黄色圆圈里的为正沿着大尺度纤维状结构掉落的星系,它们相对于中央星系沿相同方向运动。右图是同向运动卫星星系对占比随张角的变化。黑色带圆点的实线为观测结果,蓝线和红线为理论模拟预测结果,黑色虚线为随机分布,阴影区为自举标准误差范围。 ... PC版: 手机版:

相关推荐

封面图片

天文学家发现星系的旋转曲线会无限远地保持平坦 挑战现有宇宙学模型

天文学家发现星系的旋转曲线会无限远地保持平坦 挑战现有宇宙学模型 凯斯西储大学(Case Western Reserve University)的科学家们在一项突破性发现中挑战了人们对宇宙学的传统认识,他们发现的新证据可能会重塑我们对宇宙的认识。托比亚斯-米斯特尔(Tobias Mistele)是凯斯西储大学文理学院天文学系的一名博士后学者,他利用"引力透镜"开创了一种革命性的技术,以深入探索神秘的暗物质领域。他发现,星系的旋转曲线在数百万光年内都保持平坦,看不到尽头。科学家们以前认为,星系的旋转曲线一定会随着窥探太空的距离越远而下降。弱透镜旋转曲线建模。资料来源:凯斯西储大学传统上,星系内恒星的行为一直令天文学家感到困惑。根据牛顿万有引力理论,外围的恒星由于引力减弱,运行速度应该较慢。但天文学家并没有观测到这一现象,从而推断出暗物质的存在。但即使是暗物质光环也应该走到尽头,因此旋转曲线不应该无限期地保持平坦。米斯特尔的分析打破了这一预期,提供了一个惊人的启示:我们所说的暗物质的影响远远超出了之前的估计,从银河系中心至少延伸了一百万光年。托比亚斯-米斯特尔。资料来源:凯斯西储大学这种长程效应可能表明,我们所理解的暗物质可能根本不存在。"这一发现对现有模型提出了挑战,"他说,"这表明要么存在巨大延伸的暗物质晕,要么我们需要从根本上重新评估我们对引力理论的理解。"文理学院天文学系教授兼主任斯泰西-麦高(Stacy McGaugh)说,米斯特尔的研究成果将发表在《天体物理学期刊通讯》上,它突破了传统的界限。"这一发现影响深远,"麦高说。"它不仅可以重新定义我们对暗物质的理解,还召唤我们探索其他引力理论,挑战现代天体物理学的根本结构。"米斯特尔在研究中使用的主要技术引力透镜是爱因斯坦广义相对论所预言的一种现象。从本质上讲,当一个大质量天体(如星系团,甚至一颗大质量恒星)使来自遥远光源的光线路径发生弯曲时,就会产生引力透镜现象。发生这种光弯曲的原因是物体的质量扭曲了其周围的时空结构。星系对光线的这种弯曲在比预期大得多的尺度上持续存在。斯泰西-麦高(Stacy McGaugh)。资料来源:凯斯西储大学作为研究的一部分,Mistele 在图表上绘出了所谓的 Tully-Fisher 关系图,以突出星系的可见质量与其旋转速度之间的经验关系。"我们知道这种关系的存在,"米斯特尔说。"但并不明显的是,走得越远,这种关系就越牢固。这种行为会持续多久?这是一个问题,因为它不可能永远持续下去。"Mistele 说,他的发现强调了在科学界进一步探索和合作的必要性,以及对其他数据进行分析的可能性。McGaugh 指出,国际粒子物理学界为探测和识别暗物质粒子做出了艰苦卓绝的努力,但迄今为止仍未取得成功:"要么暗物质光环比我们预期的要大得多,要么整个范式都是错误的。"提前预测到这一行为的理论是莫蒂-米尔格罗姆(Moti Milgrom)在1983年作为暗物质的替代理论提出的修正引力理论MOND。因此,对这一结果的显而易见而又难免引起争议的解释是,暗物质是一个嵌合体;也许它的证据指向了某种新的引力理论,超越了爱因斯坦教给我们的理论。编译来源:ScitechDailyarXiv:2406.09685 ... PC版: 手机版:

封面图片

中国科学家发现浩瀚宇宙中“定位”太阳新方法

中国科学家发现浩瀚宇宙中“定位”太阳新方法 记者从位于内蒙古自治区正镶白旗的中国科学院国家空间中心明安图野外科学观测研究站获悉,由中国科学院国家空间科学中心研究员颜毅华领衔的科研团队,发现一种新的可用于明安图射电频谱日像仪(MUSER)图像位置校准的方法,这种方法可在浩瀚宇宙中“定位”太阳准确位置。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

科学家设法提高超级计算机模拟准确性 揭开星系形成背后的秘密

科学家设法提高超级计算机模拟准确性 揭开星系形成背后的秘密 天文学家可以使用超级计算机来模拟星系从 138 亿年前宇宙大爆炸至今的形成过程。但是,这其中存在许多误差来源。由隆德研究人员领导的一个国际研究小组在八年时间里花费了一亿个计算机小时试图纠正这些错误。为了最大限度地减少误差来源,制作出更精确的模拟结果,由隆德大学的 Santi Roca-Fàbrega、首尔国立大学的 Ji-hoon Kim 和加利福尼亚大学的 Joel R. Primack 领导的来自 60 所高等院校的 160 名研究人员通力合作,现在公布有史以来最大规模的模拟对比结果。"要在星系形成理论方面取得进展,对不同模拟的结果和代码进行比较至关重要。"天体物理学研究员桑蒂-罗卡-法布雷加(Santi Roca-Fàbrega)说:"我们现在已经做到了这一点,将世界上最好的星系模拟器背后相互竞争的代码组聚集在一起,进行了一种超级比较。"该合作项目的三篇论文(即 CosmoRun 模拟)现已发表在《天体物理学杂志》上。在这些论文中,研究人员分析了一个与银河系质量相同的星系的形成过程。模拟基于相同的天体物理学假设,包括宇宙中第一批恒星产生的紫外线背景辐射、气体冷却和加热以及恒星形成过程。模拟宇宙的一部分。资料来源:AGORA 协作小组新成果让研究人员得出结论,像银河系这样的圆盘星系在宇宙历史上形成的时间非常早,这与詹姆斯-韦伯望远镜的观测结果是一致的。他们还找到了一种方法,使卫星星系围绕较大星系运行的星系的数量与观测结果相一致,最终解决了一个众所周知的问题,即"卫星缺失问题"。此外,研究小组还揭示了星系周围的气体是如何成为逼真模拟的关键,而不是恒星的数量和分布,因为恒星的数量和分布是以前的标准。Santi Roca-Fàbrega 说:"这项工作已经持续了八年,需要运行数百次模拟,使用一亿个小时的超级计算设施。"他们的旅程仍在继续,以进一步完善对星系形成的模拟。Santi Roca-Fàbrega 和他的同事们希望通过每一项技术成果,为宇宙和星系的诞生与演化这一令人眼花缭乱的谜题增添新的内容。Santi Roca-Fàbrega说:"这是对星系形成进行更可靠模拟的开始,这反过来将帮助我们更好地了解我们的银河系。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

中国科学家发现银河系比想象中更大

中国科学家发现银河系比想象中更大 中国科学家近日利用APOGEE近红外恒星光谱巡天数据分析,首次重构了银河系从内到外完整的恒星径向密度分布,直接测量结果显示“银河系比之前假定的更大”。相关研究成果已发表在国际权威学术期刊《自然·天文学》上。文章第一作者、云南大学中国西南天文研究所副教授连建辉介绍,基于新的恒星面密度分布,研究团队发现银河系半光半径(包含星系总光度一半的半径)几乎是之前估计的两倍(约1.9万光年),并和近邻同质量星系的半径基本一致,表明银河系在星系大小方面是一个典型的盘星系。

封面图片

从宇宙斑点到巨大星系:韦伯揭示早期宇宙的巨型星系Gz9p3

从宇宙斑点到巨大星系:韦伯揭示早期宇宙的巨型星系Gz9p3 然而,我们观测到的星系肯定不是稚嫩的,新的观测结果表明,在如此早期,星系的质量和成熟度都超过了以前的预期,这有助于改写我们对星系形成和演化的认识。我们的国际研究小组最近对已知最早的星系之一Gz9p3进行了前所未有的详细观测,观测结果发表在《自然-天文学》(Nature Astronomy)上。它的名字来源于格拉斯合作(我们国际研究团队的名称)和星系的红移z=9.3这一事实,红移是描述天体距离的一种方法,因此有了G和z9p3。Gz9p3,宇宙最初 5 亿年中已知最亮的合并星系(通过 JWST 观测) 左图:直接成像显示中央区域有一个双核核心。右图光剖面的等高线显示出星系合并产生的拉长的团块结构。资料来源:美国国家航空航天局就在几年前,Gz9p3 还只是哈勃太空望远镜中的一个光点。但通过詹姆斯-韦伯太空望远镜,我们可以观测到这个天体在宇宙大爆炸后 5.1 亿年,也就是大约 130 亿年前的样子。对于这样一个年轻的宇宙来说,Gz9p3 的质量和成熟度都远超预期,它已经包含了几十亿颗恒星。它是迄今为止确认的质量最大的天体,根据计算,它的质量是宇宙早期发现的其他星系的 10 倍。这些结果表明,银河系要达到这样的大小,恒星的发展速度和效率一定比我们最初想象的要快得多。早期宇宙中最遥远的星系合并这个 Gz9p3 不仅质量巨大,而且其复杂的形状一眼就能看出它是有史以来最早的星系合并之一。JWST 对这个星系的成像显示了两个相互作用星系的典型形态。合并还没有结束,因为我们仍然可以看到两个组成部分。当两个大质量天体像这样合并时,它们会在合并过程中有效地丢弃一些物质。因此,这些被丢弃的物质表明,我们观测到的是有史以来最遥远的一次合并。随后,研究人员将目光投向更深层次,以描述构成合并星系的恒星群。利用 JWST,我们能够检查星系的光谱,就像三棱镜把白光分成彩虹一样,我们也能把光分成不同的部分。如果仅使用成像技术,对这些非常遥远天体的大多数研究只能显示出非常年轻的恒星,因为年轻的恒星更亮,所以它们的光会主导成像数据。例如,由星系合并引发的一个不到几百万年历史的年轻明亮群体,比一个已经超过一亿年历史的古老群体更加耀眼。利用光谱技术,我们可以进行非常详细的观测,从而区分出这两个种群。早期宇宙的新模型考虑到恒星形成的时间较早,到这一宇宙时期已经足够老化,如此成熟的老恒星群是我们始料未及的。光谱非常细致,我们可以看到老恒星的细微特征,这些特征告诉我们,它们比你想象的要多得多。光谱中检测到的特定元素(包括硅、碳和铁)显示,这个较老的族群的存在一定是为了给星系提供丰富的化学物质。令人惊讶的不仅是星系的大小,还有它们成长到如此成熟的化学状态的速度。这些观测结果提供的证据表明,在宇宙大爆炸之后,恒星和金属迅速而有效地积累起来,并与正在进行的星系合并联系在一起,这表明拥有几十亿颗恒星的大质量星系比预期的更早存在。观测结果提供了证据,证明恒星和金属在宇宙大爆炸之后迅速、高效地积累起来。资料来源:NASA、ESA、Jennifer Lotz(STSCI)、Matt Mountain(STSCI)、Anton M. Koekemoer(STSCI)、HFF 小组(STSCI)孤立星系从其有限的气体库中就地积累恒星群,然而,这种增长方式对星系来说是缓慢的。星系之间的相互作用可以吸引新的原始气体流入,为恒星的快速形成提供燃料,而星系的合并则为质量的积累和增长提供了更快的通道。现代宇宙中最大的星系都有过合并的历史,包括我们的银河系,它是通过与较小星系的连续合并才发展到现在的大小的。对Gz9p3的这些观测结果表明,星系能够在早期宇宙中通过合并迅速积累质量,恒星形成效率比我们预期的要高。利用 JWST 进行的这一观测和其他观测正在促使天体物理学家调整他们对宇宙早期的建模。我们的宇宙学不一定是错的,但我们对星系形成速度的理解可能是错的,因为它们的质量比我们认为的可能还要大。在利用 JWST 进行科学观测的两年期即将到来之际,这些新成果可谓恰逢其时。随着观测到的星系总数不断增加,研究早期宇宙的天文学家们正从发现阶段过渡到我们拥有足够大的样本来开始建立和完善新模型的阶段。现在是了解早期宇宙奥秘的最激动人心的时刻。编译自:ScitechDaily ... PC版: 手机版:

封面图片

最新研究挑战宇宙暗物质存在理论

最新研究挑战宇宙暗物质存在理论 宇宙的膨胀速度受到两种相互竞争的力量的影响:一种是减缓膨胀速度的引力,另一种是加速膨胀速度的暗能量。这张图显示了宇宙历史上的膨胀率,较浅的曲线表示膨胀较快,较陡的曲线表示膨胀较慢。大约 75 亿年前,宇宙开始加速膨胀,膨胀率发生了明显的变化。宇宙学模型普遍认为,宇宙中约27%为暗物质,普通物质不足5%,其余则为暗能量。其中,暗物质指所有似乎与光或电磁场不相互作用的物质,或只能通过引力解释的物质。人们看不到它,也不知道它由什么组成,但它有助于科学家揭示星系、行星和恒星的行为。在最新研究中,加拿大渥太华大学物理学教授拉金德拉·古普塔结合共变耦合常数理论和疲光理论得出结论称,宇宙中可能没有暗物质。其中共变耦合常数理论描述了自然力如何随着时间的推移而减弱;疲光理论则阐释了光经过“长途旅行”会损失能量。古普塔表示,他提出的新理论已经接受了测试,并被证明与一些观测结果相匹配。基于此前关于宇宙年龄为267亿年的研究,古普塔提出宇宙不需要暗物质存在的说法。“在标准宇宙学中,宇宙的加速膨胀被认为是由暗能量引起的,但实际上是由于自然力在膨胀时减弱,而不是暗能量。”古普塔说。“红移”是指光向光谱的红色部分移动。研究人员分析了文献中关于低红移时星系分布和高红移时声学视界的角大小的最新论文中的数据。古普塔说,目前已有几篇论文质疑暗物质的存在。最新论文是第一篇指出宇宙组成不需要暗物质,同时也能与某些宇宙学关键观测结果相吻合的论文。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人