新研究显示泥炭地正在失去抗旱能力

新研究显示泥炭地正在失去抗旱能力 泥炭地受到干旱的影响比以前预计的要大,这引起了人们的关注,因为泥炭地在应对气候变化方面起着至关重要的作用。长期干旱大大降低了泥炭吸收更多二氧化碳(CO2)的能力。此外,加强生物多样性对提高泥炭抗旱能力的作用微乎其微。拉德布德大学的科学家们在最近发表于《英国皇家学会院刊 B》上的一项研究中报告了这些发现。泥炭是一个巨大的碳汇:每平方米泥炭能够储存的二氧化碳比世界上任何其他生态系统都要多。因此,荷兰以及斯堪的纳维亚和波罗的海国家的泥炭地在应对气候变化方面发挥着重要作用。然而,泥炭正承受着越来越大的压力,并且对气候变化导致的干燥夏季极为敏感。这就是拉德布德生物与环境科学研究所的研究人员得出的结论。领衔作者比约恩-罗布鲁克解释说:"在我们的实验室里,在受控条件下,我们首先确保大块泥炭经过长时间充分湿润。然后,我们将泥炭慢慢烘干。其中一半受到轻度干旱,水位比泥炭本身低大约五厘米。另一半则处于极端干旱条件下;在这种情况下,水位比泥炭低 20 厘米。这相当于三周没有下雨这在荷兰近年来也越来越常见"。正在拉德布德大学进行测试的泥炭。图片来源:Bjorn Robroek,拉德布德大学这些实验表明,遭受轻度干旱的泥炭仍能吸收一定量的碳。Robroek:然而,在极端干旱的条件下,泥炭几乎无法吸收更多的碳。在长期干旱的情况下,泥炭甚至会反过来释放碳。当然,干旱不仅影响泥炭地。干旱的夏季也使其他生态系统变得更加脆弱。不过,以草地为例,我们现在有办法解决干旱造成的问题。增加这类生态系统的生物多样性(通过种植更多不同的植物),如未来堤坝项目,可保持生态系统的健康和复原力。不过,罗伯克认为,就泥炭地而言,通过这种方式提高生物多样性对抗旱作用不大。我们在泥炭实验中测试的不同苔藓对抗旱几乎没有任何作用。这并不意味着生物多样性对泥炭不重要:例如,它有助于碳储存。但在抗旱方面,需要采取不同的方法。消费者可以做一些小事来保护泥炭。例如,购买不含泥炭的盆栽基质和堆肥。不过,归根结底,这主要是一个需要从政治层面解决的问题。过去,河流沿岸的缓冲地带通常由泥炭地组成,但如今其中大部分都是用于农业的草地。这些地区经常被割草和犁地,因此几乎不存水。因此,这些洪泛区的水会更快地排入河流,造成洪水泛滥。转而采用自然管理方法需要花费时间和金钱,但在未来将产生巨大效益。泥炭地,即使是低地泥炭区,也将保留更多的水分,从而提供更好的保护。你可以把这比作一块海绵,它会逐渐将水释放回地表。在这些地方,泥炭也是储存碳的最有效选择。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究发现病毒会增强海洋的碳捕获能力

研究发现病毒会增强海洋的碳捕获能力 基于网络的生态互动分析表明,北极和南极地区 RNA 病毒物种的多样性高于预期。基因组分析的进展通过将基因组测序数据与人工智能分析相结合,研究人员发现了海洋病毒,并对其基因组进行了评估,发现它们从其他微生物或细胞中"窃取"了处理海洋中碳的基因。通过绘制微生物代谢基因(包括水下碳代谢基因)图谱,研究人员发现全球海洋中有 340 种已知的代谢途径。其中,有128种还存在于海洋病毒的基因组中。俄亥俄州立大学微生物学教授兼微生物组科学中心主任马修-沙利文(Matthew Sullivan)说:"这个数字如此之高,让我感到震惊。"通过计算技术的进步,研究小组挖掘出了这一巨大的数据宝库,现在已经揭示了哪些病毒在碳代谢中发挥作用,并将这一信息用于新开发的群落代谢模型,以帮助预测如何利用病毒来设计海洋微生物群,从而实现更好的碳捕获。沙利文说:"建模是为了了解病毒是如何提高或降低系统中的微生物活性的。群落代谢建模告诉我一个梦寐以求的数据点:哪些病毒以最重要的代谢途径为目标,这很重要,因为这意味着它们是很好的杠杆。"昨天(2024 年 2 月 17 日),沙利文在丹佛举行的美国科学促进会年会上介绍了这项研究。碳捕获病毒工程苏利文是塔拉海洋联合会(Tara Oceans Consortium)的病毒研究协调人,该联合会是一项为期三年的全球性研究,研究气候变化对世界海洋的影响,并收集了 35000 份含有丰富微生物的水样。他的实验室主要研究噬菌体(感染细菌的病毒)及其在工程框架中的放大潜力,以操纵海洋微生物将碳转化为最重的有机物,沉入海底。"海洋会吸收碳,这可以缓冲气候变化。二氧化碳作为气体被吸收,并由微生物将其转化为有机碳,"沙利文说。"我们现在看到的是,病毒以这些微生物群落代谢中最重要的反应为目标。这意味着我们可以开始研究哪些病毒可以用来将碳转化为我们想要的那种碳。换句话说,我们能否加强这个巨大的海洋缓冲区,使其成为碳汇,为应对气候变化争取时间,而不是将碳释放回大气层,加速气候变化?"2016 年,塔拉团队确定海洋中的碳下沉与病毒的存在有关。人们认为,当受病毒感染的碳处理细胞聚集成较大的粘性聚合体并掉落到海底时,病毒有助于碳的下沉。研究人员开发了基于人工智能的分析方法,从数以千计的病毒中找出少数"VIP"病毒,在实验室中进行培养,并将其作为海洋地球工程的模型系统。塔拉海洋联合会的达米安-埃维拉德(Damien Eveillard)教授开发的这种新的群落代谢模型,有助于他们了解这种方法可能会产生哪些意想不到的后果。沙利文的实验室正在吸取这些海洋方面的经验教训,并将其应用到人类环境中的病毒微生物组工程中,以帮助脊髓损伤后的康复、改善感染艾滋病毒的母亲所生婴儿的预后、对抗烧伤伤口的感染等。海洋以外的应用土木、环境和大地工程学教授沙利文说:"我们正在进行的对话是,'这其中有多少是可以转换的?'我们的总体目标是对微生物组进行工程设计,使其朝着我们认为有用的方向发展。"他还报告了在一个完全不同的生态系统中使用噬菌体作为地球工程工具的早期努力:瑞典北部的永久冻土带,那里的微生物既能改变气候,又能在冻土融化时对气候变化做出反应。俄亥俄州立大学微生物学副教授弗吉尼亚-里奇(Virginia Rich)是美国国家科学基金会资助的EMERGE生物集成研究所的联合主任,该研究所设在俄亥俄州立大学,负责组织瑞典野外现场的微生物组科学研究。里奇还共同领导了之前的研究,该研究发现解冻的永久冻土层土壤中的单细胞生物是甲烷(一种强效温室气体)的重要生产者。里奇与新罕布什尔大学的露丝-瓦尔纳(Ruth Varner)共同组织了美国科学院会议,后者是EMERGE研究所的共同负责人,该研究所的工作重点是更好地了解微生物群如何应对永久冻土融化以及由此产生的气候相互作用。沙利文的演讲题目是"从生态系统生物学到用病毒管理微生物组",是在题为"以微生物组为目标的生态系统管理"的会议上发表的:小角色,大作用"的会议上发表的。海洋方面的工作得到了美国国家科学基金会、戈登和贝蒂-摩尔基金会以及塔拉海洋公司的支持,除美国国家科学基金会外,土壤方面的工作也得到了能源部和格兰瑟姆基金会的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

突破性研究凸显陆地生态系统的脆弱性

突破性研究凸显陆地生态系统的脆弱性 重建新墨西哥州幽灵牧场的晚三叠世生态系统。已发表的标本和保存在幽灵牧场的物种被纳入研究小组的全球生态数据集。图片来源:Viktor O. Leshyk/洛杉矶县自然历史博物馆此外,与海洋环境相比,这些陆地环境的恢复期更长,这一发现出乎意料。这一发现对正在发生的全球生物大灭绝事件具有重要意义,而这一事件主要是由人类引起的气候变化造成的。恐龙研究所的合著者、美国国家科学基金会博士后研究员汉克-伍利(Hank Woolley)博士说:"如果你从陆地生态系统中移除大量的小动物,这些生态系统就会分崩离析,比海洋中的生态系统更容易崩溃。其次,陆地生态系统从大规模灭绝事件中恢复过来所需的时间要比海洋生态系统长。"合作研究工作和方法该项目由伍利和许多其他来自国家卫生研究院及其他机构的古生态学家和地质学家共同完成,是第一项深入研究三叠纪末大灭绝事件对陆地和海洋生态系统影响的有据可查的科学研究。除了伍利之外,NHM恐龙研究所的博士生保罗-伯恩(Paul Byrne)和基尔斯滕-福莫索(Kiersten Formoso,后者现在是罗格斯大学新晋的总统博士后研究员)以及博士后贝基-吴(Becky Wu)博士也与南加州大学的同事共同撰写了这项研究报告。Kiersten Formoso 博士说:"这项研究工作还结合了南加州大学和自然历史博物馆的古生物学、古生态学和地球生物学研究人员的专业知识。能有这么多跨学科的作者一起解决关于过去和自然世界的有趣问题,真是令人兴奋"。早起侏罗世陆地生态系统的长期重组与恐龙的多样化同时发生。图片来源:洛杉矶县自然历史博物馆提供"传统的海洋生态空间框架确实非常有效,并被广泛应用于海洋古生态学。因此,虽然有很多关于海洋生态系统在大灭绝中变化的重建,但我们从未能以同样的方式研究陆地生态系统的变化。我们希望这个新的陆地生态空间框架将为未来的研究打开一扇门,比较海洋和陆地群落如何对快速气候变化事件做出相似或不同的反应,"共同作者、现任南安普顿大学1851研究员的艾莉森-克里布博士(Dr. Alison Cribb)说。伍利说:"作为一个研究海洋和陆地生命古生物学的研究小组,我们的研究系统涵盖了从亿万年前的叠层石到恐龙,我们认为这将是一个独特的机会,可以将我们广泛的专业知识结合在一起,以一种新的方式解决一个引人入胜的紧迫课题大灭绝。"最早的恐龙是在2.3亿多年前的三叠纪时期首次出现并扩散的,而在2.015亿年前,一场由二氧化碳引发的灾难性全球变暖导致了三叠纪末期的大灭绝事件,约76%的海洋和陆地生物因此灭绝。大灭绝事件对海洋环境的影响已经通过创建生态空间根据动物的进食和移动方式以及生活地点对动物进行分类的三维表示得到了很好的研究,但这种技术从未应用于陆地生态系统。直到现在,这种技术才被应用于陆地生态系统。研究结果和意义新科学家团队从古生物学数据库中整理了一千多条记录,首次建立了横跨三叠纪末大灭绝的陆地生态空间。接下来,他们对每种动物在三个轴线上的出现情况进行了分类,以了解不同类群的动物在生存方式上的代表性例如,主要生活在树上而吃昆虫,或者在地面上捡拾大型动物的食物。研究人员随后将这一新框架与三叠纪末大灭绝的海洋生态空间进行了比较。研究概念和发现的图示。图片来源:C. Henrik Woolley/洛杉矶县自然历史博物馆"我们的研究结果表明,在三叠纪末大灭绝之后,陆地和海洋的恢复情况不同,陆地生态系统经历的灭绝严重程度更高,而且需要比海洋更长的时间才能恢复起某些生态作用的群体。"福莫索说:"这是因为陆地生态系统中扮演这些角色的类群较少,而在海洋中,许多分类群可能在做相同或类似的事情。"他们的发现可能会对我们的现代陆地生态系统提出严酷的警告,因为我们正在与人类造成的气候变化导致的日益严重的物种灭绝作斗争。首先,三叠纪末期的物种灭绝事件涉及火山喷发二氧化碳。研究结果的另一个启示是,任何大灭绝事件都不会对不同的生态系统产生相同的影响。陆地上的生命有明显的不同开花植物只是三叠纪期间不存在的一类植物,但如果知道这些生态系统可能比以前想象的更加脆弱,就应该敲响警钟。更广泛的影响和未来方向"了解生命在过去是如何应对气候变化的,是古生物学的一个主要目标,也为我们解决现代生物多样性危机提供了洞察力和工具。然而,这需要对各种生物、生态系统和环境有详细的了解。我们在国家卫生研究院和南加州大学合作开展的古生物学项目的一个独特之处在于,它结合了一批具有跨物种、跨系统和跨时间专业知识的古生物学家所有这些都使得像本文这样的大视野研究成为可能。因此,我们对古生物学的影响要大于古生物学家的总和!"国家哈姆雷特博物馆恐龙研究所馆长、伍利的博士和博士后导师内森-史密斯(Nathan Smith)博士说。为这项研究开发的新框架还可以帮助科学家们更好地理解历史上的大规模灭绝。这可能包括我们正在面临的危机,并可能为更有效的缓解和保护工作提供信息。该合作项目还展示了化石和化石记录在了解恐龙世界和我们快速变化的气候方面所具有的价值。研究与收藏高级副总裁路易斯-奇亚佩博士和恐龙研究所所长格雷琴-奥古斯汀说:"洛杉矶县自然历史博物馆收藏了数以百万计的化石,涵盖了整个生命史。我们的藏品非常适合解决与过去和现在的物种灭绝有关的大量问题"。编译自/scitechdaily ... PC版: 手机版:

封面图片

《.生态学 》

《.生态学 》 简介:研究生物与环境相互作用关系的学科,关注个体、种群、群落及生态系统等层次的动态平衡。通过分析能量流动、物质循环和信息传递,揭示自然规律与人类活动对地球生命网络的影响。 亮点:为环境保护、资源管理及气候变化应对提供科学依据,强调生物多样性保护与可持续发展路径,兼具自然科学与社会实践的双重价值。 标签: #生态系统 #生物多样性 #可持续发展 #环境保护 #跨学科研究 链接:

封面图片

科学家在智利阿塔卡马沙漠发现前所未见的微生物地下栖息地

科学家在智利阿塔卡马沙漠发现前所未见的微生物地下栖息地 科学家利用新的 DNA 分析技术在智利阿塔卡马沙漠深处发现了多种微生物生命,为极端环境中的生物多样性提供了见解,并对地外生命研究产生了潜在影响。永盖-普拉亚,智利阿塔卡马沙漠最干旱的地区之一。资料来源:D. Wagner, GFZ这是以新开发的分子 DNA 分析方法为基础的,这种方法可以集中提取和分析细胞内 DNA。这些DNA来自活生物体或休眠生物体的完整细胞,因此可以检测到栖息在深达4.20米的极干旱土壤中的有生命力和潜在活性的微生物群落。这项发表在《美国国家科学院院刊》(PNAS Nexus)上的研究,扩大了我们对干旱、盐碱和营养缺乏等极端条件下接近生命极限的地区生物多样性的了解。研究结果还对寻找其他星球上的生命有一定意义。沙漠是地球上最大、最脆弱的生态系统之一。虽然那里的条件最恶劣、最危及生命,但却孕育着微生物生命。在没有定期降雨的情况下,微生物利用矿物质和盐分等土壤成分以及大气中的气体作为能量和水分来源,成为调解养分流动的最重要生态成分。"微生物多样性和分布的研究对于充分了解微生物过程在维持沙漠生态系统生态平衡和功能性方面的核心作用至关重要,尤其是在气候变化背景下沙漠生态系统的未来发展方面。"永盖-普拉亚研究遗址:挖掘出的剖面坑和安托法加斯塔大学的实验室手推车。图片来源:L. Horstmann, GFZ智利北部 105000 平方公里的阿塔卡马沙漠被认为是世界上最干旱的炎热沙漠。因此,这里非常适合研究这种栖息地。研究人员已经对水深约一米的浅水区进行了调查。在这里,他们了解到这是一个可以抵御紫外线辐射的利基栖息地,而且这里仍有水源,微生物可以在此繁衍生息。另一方面,迄今为止只有少数研究对沙漠土壤的深层进行了分析。因此,GFZ 地球微生物学组的博士生卢卡斯-霍斯曼(Lucas Horstmann)和博士后研究员丹尼尔-利普斯(Daniel Lipus),以及该组负责人、波茨坦大学地球微生物学和地球生物学教授德克-瓦格纳(Dirk Wagner)领导的研究小组重点研究这些土壤。其他同事来自柏林工业大学和智利安托法加斯塔大学。研究人员希望测试极度干旱的阿塔卡马沙漠深层沉积物是否也能成为特殊微生物的栖息地。研究小组在安托法加斯塔东南约 60 公里处的永盖地区对土壤剖面进行了研究,分析了沿深度剖面的微生物多样性及其与土壤特性的相互作用,该深度剖面既包括台地沉积物,也包括下面的冲积扇沉积物,最深处达 4.2 米。为此,他们挖掘了一个土壤剖面,每隔 10 厘米采集一个土壤样本,深度达 3 米,然后每隔 30 厘米采集一个样本,这些样本被送往德国联邦科学研究中心的实验室进行分析。为了检测样本中的生命痕迹,科学家们使用了德克-瓦格纳(Dirk Wagner)等人在德国科学研究基金会(GFZ)开发的分子 DNA 分析新技术:使用一种特殊的提取方法,可以从样本中只过滤出细胞内 DNA,即来自完整和潜在活性细胞的 DNA。为此需要使用各种化学试剂、离心机和过滤器。瓦格纳强调说:"这种方法对极端环境中微生物多样性的研究是一个重大改进,因为它有效地排除了死细胞 DNA 产生的偏差,即使由于生物量较低而达到其他方法的检测极限时,仍能提供有效数据。"通过对样本进行细胞内 DNA 提取和随后的基因测序,研究人员能够鉴定出深度达 4.2 米的潜在微生物。在上层 80 厘米处,他们主要发现了属于固着菌门的微生物,但它们的数量随着深度的增加而减少,可溶性盐的含量也随之增加。研究人员猜测,高浓度盐分和日益缺水也可能是导致微生物在沙丘沉积物下部停止定殖的原因。在这方面,他们的研究结果与之前的研究结果是一致的。然而,霍斯特曼和瓦格纳的研究小组再次在两米以下的冲积扇沉积层中发现了一个微生物群落。该群落比地表群落更加多样化,很可能与地表完全隔离。它主要由属于放线菌门的细菌组成,放线菌门是一个具有特殊成员的群体,通常存在于干燥或原始的土壤中。古剖面上部。资料来源:D. Wagner, GFZ这些微生物的存在可能与水泡石膏的存在有关,水泡石膏可溶解成无水石膏,从而提供另一种水源。本研究中观察到的生物属于可利用氢气等痕量气体作为能量来源,利用二氧化碳作为碳源进行生长的物种。第一作者卢卡斯-霍尔曼(Lucas Hormann)说:"这种类型的新陈代谢被称为化学溶解自养,其他研究表明,它对有机物作为碳源极其有限的极干旱土壤非常重要。因此,对于本研究中调查的孤立的地下壁龛来说,它也可能是必不可少的。"总结与展望:令人惊叹的沙漠生物多样性及其对地外生命的影响霍斯特曼总结道:"这个地下群落在两米深以下的冲积扇沉积物中茁壮成长,显示出惊人的多样性和生态稳定性,它的发现挑战了我们目前对沙漠生态系统的认识。"作者认为,该群落可能早在 1.9 万年前就已在土壤中定植,当时土壤还未被洼地沉积物掩埋,他们还假设该群落可能会继续向下延伸一段未知的距离,这代表了超干旱沙漠土壤中以前未知的深层生物圈。合著者德克-瓦格纳(Dirk Wagner)说:"鉴于旱地在地球上的广泛分布,在以前未开发的地下土壤中存在潜在的碳结合群落,不仅对沙漠中的生物多样性,而且对全球范围的元素循环都有深远影响。这表明这些生境的重要性至今仍被低估。这也强调了地表下栖息地对于未来全面了解沙漠生态系统的重要性"。研究人员强调,这项研究的结果不仅对我们的地球有影响,而且也与正在进行的关于在其他行星上寻找生命的讨论有关:"火星上存在类似于冲积扇沉积物中的石膏沉积物,这对天体生物学具有重大意义。这些地表下群落与阿塔卡马的石膏基质的联系可能会提供进一步的证据,证明火星上的石膏沉积不仅表明过去可能存在液态水,而且还可能成为目前微生物生命的宜居环境。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员提出一种在政府成本效益分析中评估生物多样性的新方法

研究人员提出一种在政府成本效益分析中评估生物多样性的新方法 研究人员建议各国政府采用一种新方法来量化为子孙后代保护生物多样性和自然环境所带来的益处。政府可在公共基础设施项目的成本效益分析中使用该方法,将动植物物种和"生态系统服务"(如过滤空气或水、为作物授粉或空间的娱乐价值)的损失转换为当前的货币价值。这一进程旨在使生物多样性的丧失和自然保护的益处在政治决策中更加明显。然而,该国际研究团队表示,目前计算生态系统服务价值的方法"存在不足",并设计了一种新方法,他们认为这种方法可以很容易地应用于财政部对未来预算报表的分析。他们的研究方法发表在《科学》杂志上,考虑到了随着人类收入的增加,自然的货币价值也会随时间推移而增加,同时也考虑到了生物多样性可能会恶化,从而使其成为更加稀缺的资源。这与当前的方法形成了鲜明对比,当前的方法不考虑生态系统服务的价值如何随时间而变化。经济原则和价值调整汉堡大学可持续发展经济学教授、本研究的主要作者莫里茨-德鲁普(Moritz Drupp)说:"我们的研究为政府提供了一个估算稀缺生态系统服务未来价值的公式,可用于决策过程。"在这一价值调整中,有两个因素起着关键作用:一方面,收入将增加,世界人口的富裕程度也将随之提高在扣除通货膨胀因素后,估计每年将提高 2%。随着收入的增加,人们愿意为保护自然付出更多。"另一方面,生态系统提供的服务越稀缺就越有价值",Drupp教授说。"稀缺商品变得更加昂贵是经济学的基本原则,在这里也同样适用。鉴于目前的发展态势,不幸的是,我们必须期待生物多样性的丧失继续下去"。研究人员认为,在当今的成本效益分析中,生态系统服务的现值必须定得高得多,如果只包括收入的增加,则必须超过 130%。如果再考虑到对红色名录指数濒危物种的影响,价值调整幅度将超过 180%。考虑这些影响将增加保护生态系统服务的项目通过成本效益测试的可能性。对政策和保护工作的影响研究团队包括三位来自英国的作者:Mark Freeman 教授(约克大学)、Frank Venmans 博士(伦敦政治经济学院)和 Ben Groom 教授(埃克塞特大学)。格鲁姆教授说:"决策者目前在评估公共投资和监管变革时使用的环境货币价值意味着,随着时间的推移,自然的价值相对低于其他商品和服务。我们的工作表明这是错误的。我们建议随着时间的推移提高生态系统的价值。这项建议可以很容易地应用于财政部的分析中,作为未来预算声明的基础"。Venmans 博士补充说:"以珊瑚礁为例。随着气候变化,预计珊瑚礁的面积和生物多样性都将减少,这意味着剩下的珊瑚礁将比现在更有价值,而且随着家庭收入的增加,价值会更高。当我们评估具有长期影响的珊瑚礁保护时,这一点非常重要。"Freeman教授说:"政府正面临着来自多方面的巨大压力,要求增加公共投资。确保生态系统保护的评估方式与其他公共项目(包括 HS2 和其他基础设施支出)保持一致至关重要。这正是我们工作的目标"。研究人员说,由于政治决策可以减轻生物多样性的损失,因此政府必须能够充分评估其决策在当前和未来造成的后果。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

冰川萎缩引发“绿色转型”:微生物正在蓬勃发展

冰川萎缩引发“绿色转型”:微生物正在蓬勃发展 来自洛桑联邦理工学院(EPFL)和查尔斯大学(Charles University)的科学家们根据"消失的冰川"(Vanishing Glaciers)项目的全球样本发现,随着冰川的缩小,山区溪流中的微生物生命也在蓬勃发展。这种"绿色过渡"导致初级生产增加,改变了当地的碳和营养循环。图片来源:EPFL/Vincent de Stark冰川注入的溪流在夏季是浑浊汹涌的洪流。大量的冰川融水搅动着岩石和沉积物,几乎没有光线可以照射到河床,而其他季节的低温和积雪则几乎没有机会让丰富的微生物群生长。但是,随着冰川在全球变暖的影响下逐渐缩小,冰川的水量也在不断减少。这意味着溪流变得更加温暖、平静和清澈,使藻类和其他微生物有机会大量繁殖,并为当地的碳和营养循环做出更大贡献。洛桑联邦理工学院河流生态系统实验室(RIVER)的全职教授汤姆-巴廷(Tom Battin)说:"我们正在目睹这些生态系统中微生物组发生深刻变化的过程由于初级生产的增加,这简直就是一场'绿色转型'。"在论文中,科学家们研究了溪水中的氮和磷等营养物质,以及生活在河床沉积物中的微生物为利用这些营养物质而产生的酶。然后,他们观察了由大小不一的冰川提供水源的巨大梯度溪流中这两种营养物质的变化。"冰川哺育的溪流生态系统通常拥有有限的碳和营养物质,尤其是磷,"前 RIVER 博士后、本文第一作者泰勒-科勒(Tyler Kohler)解释说。"随着冰川的萎缩,藻类和其他微生物对磷的需求增加,高山溪流中磷的限制可能会越来越多"。因此,磷作为生命的重要组成部分,在下游生态系统(包括较大的河流和湖泊)中将变得更加稀缺,对其食物网的影响尚不可知。2023 年 8 月,"消失的冰川"项目的科学家在《皇家学会开放科学》上发表了一篇论文,支持上述发现。在这项研究中,作者分析了乌干达鲁文佐里山脉一条由冰川提供水源的小溪的微生物群。在这里,营养物质和酶的组成也大不相同,藻类非常丰富。巴廷说:"鲁文佐里冰川发生的变化让我们看到了瑞士冰川注入的溪流在30年或50年后的样子。这种变化的一个结果是,随着冰川注入的溪流接纳更多的微生物生命,它们将在二氧化碳通量等生物地球化学循环中发挥更大的作用。"RIVER 团队计划在此基础上继续开展研究。他们正在对冰川溪流中的微生物生物多样性进行普查,并利用各种基因组信息,探索多样化的微生物是如何在地球上最极端的淡水生态系统中生存的。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人