气球上堆叠的薄饼胶片拍摄出迄今为止最精确的伽马射线光束照片

气球上堆叠的薄饼胶片拍摄出迄今为止最精确的伽马射线光束照片 一张薄饼可以捕捉到吸管插入的位置,但要记录吸管的方向则需要一整叠薄饼。同样,神户大学的研究人员可以用气球上的一叠放射性感应胶片精确地拍摄到发射伽马射线的脉冲星(天空中的灯塔)。为了能够确定悬挂的吊船相对于恒星的方位,他们还增加了一个星空照相机和一个对伽马射线的撞击进行时间标记的装置。资料来源:神户大学恒星以从红外线到伽马射线的全光谱范围向我们发光。对于每一个波段,都需要不同的传感设备。其中最具挑战性的是伽马射线,它因是核裂变的高能产物而闻名于世,因为它的波长非常短,这意味着它不会像其他形式的光那样与物质发生相互作用,因此无法用透镜偏转,也无法被标准传感器探测到。因此,我们在探测来自迷人的恒星物体(如超新星及其残余物)的光的能力上存在差距。载有望远镜的吊篮从澳大利亚爱丽斯泉起飞。图片来源:GRAINE 合作项目为了解决这个问题,神户大学天体物理学家青木茂树和他的团队将目光转向了最早用于探测放射性的材料感光胶片。青木解释说:"我们的研究小组一直在关注乳剂胶片在高精度追踪伽马射线方面的卓越能力,并提出通过引入一些现代数据捕获和分析功能,乳剂胶片可以成为一种出色的伽马射线望远镜。"基于这些胶片的高灵敏度以及从胶片中提取数据的新颖、自动化、高速的过程,物理学家们的想法是将几张胶片堆叠起来,以准确捕捉伽马射线撞击时产生的粒子的轨迹,就像一张薄饼可能会捕捉到你将吸管戳进去的位置,但要记录吸管的方向则需要一整叠薄饼。显影后的乳剂胶片切片。在整个平面上,可以看到伽马射线撞击产生的微粒的痕迹,如微小的灰点。资料来源:GRAINE 合作项目为了减少大气干扰,他们随后将这堆胶片安装到一个科学观测气球上,将其升至 35 至 40 千米的高度。然而,由于气球在风中摇摆和扭曲,"望远镜"的方向并不稳定,因此他们增加了一组摄像机,随时记录吊船相对于星空的方位。但这又产生了另一个问题,因为任何用长时间曝光拍摄过照片的人都知道,照相胶片无法记录时间的流逝,因此无法直接知道伽马射线撞击发生的时间。为了克服这个问题,他们让底层的三层胶片以固定但不同的速度来回移动,就像时钟的指针一样。根据这些底层胶片上痕迹的相对错位,他们就可以计算出撞击的精确时间,从而将其与摄像机拍摄的画面联系起来。现在,他们在《天体物理学杂志》(TheAstrophysical Journal)上发表了这一装置产生的第一幅图像。这是迄今为止拍摄到的最精确的船帆座脉冲星图像。船帆座脉冲星是一颗快速旋转的中子星,它在夜间像灯塔一样向天空投射出一束伽马射线。"我们总共捕捉到了几万亿条轨迹,精确度达到 1/10000 毫米。通过添加时间信息并将其与姿态监测信息相结合,我们能够非常精确地确定事件发生的'时间'和'地点',其分辨率是传统伽马射线望远镜的 40 多倍。船帆座脉冲星的图像。图像的分辨率比以前高出 40 多倍:左下方的圆圈表示脉冲星的图像散布,以便与虚线圆圈表示的先前最佳伽马射线图像(另一个恒星天体)的图像散布进行比较。资料来源:GRAINE 合作小组虽然这些结果已经令人印象深刻,但新技术为捕捉这一频段的光的更多细节提供了可能性。神户大学的研究人员解释说:"通过科学气球实验,我们可以尝试为天体物理学的许多领域做出贡献,特别是将伽马射线望远镜应用于'多信使天文学',在这种情况下,需要通过不同的技术对捕捉到的同一事件进行同步测量。在2018年气球实验成功产生数据的基础上,我们将在接下来的气球飞行中扩大观测区域和时间,并期待在伽马射线天文学领域取得科学突破。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

最强伽马射线暴 将会曝出这些超新星“猛料”

最强伽马射线暴 将会曝出这些超新星“猛料” 图 1 智利的双子座南望远镜对GRB221009A的观测(图片来源:双子星天文台/NOIRLab/NSF/AURA//B. O'Connor (UMD/GWU)& J. Rastinejad & W. Fong (西北大学)短短几小时间,全球数以万计的望远镜指向了爆炸的源头,纷纷记录下这载入史册的一刻。这一事件有个绰号叫做“BOAT”(brightest of all time),官方名称是“GRB221009A”,科学家们希望通过它阐明在可怕的黑洞中的物理学知识。马里兰和乔治华盛顿大学的布兰登·奥康纳表示:“这是百年一遇,甚至是千年一遇的大事记,我们惊叹于它的出现,并十分庆幸自己有机会研究它。”其实,伽马射线并不稀奇,几乎每天都有一束掠过地球,宇宙中出现的次数更加频繁。大质量恒星超新星爆炸中产生中子星,这一恒星尸骸逐渐燃尽了能量,坍塌引起的伽马射线仅闪耀几分之一秒。而由黑洞引起的伽马射线能长达几分钟,它从超新星爆炸中产生,吞噬了母星的大量物质,不得以巨大射流的形式喷射出来。此次观察到的伽马射线暴相比以往格外突出,产生的光子轰击探测器长达十分钟,携带的能量远高于往常观测值。在18太电子伏特下,GRB221009A的光子能量是地球上最强大的粒子发生器大型强子对撞机产生光子的两倍。伽马射线与宇宙尘埃相互作用产生的爆炸余波也很不寻常,尽管伽马射线源被银河系的厚带阻隔,但比之前所见的余辉都要闪耀,爆炸使地球大气层发生电离,干扰了长波无线电通信。图 2 智利的双子座南望远镜观测到的GRB221009A伽马射线暴(图片来源:双子星天文台/NOIRLab/NSF/AURA//B. O'Connor (UMD/GWU)& J. Rastinejad & W. Fong (西北大学))布兰登·奥康纳表示,2022年10月14日,伽马射线发射五天后,我们借助智利的双子座南望远镜,追踪到了大约30 %伽马射线的来源,它来自于充满灰尘的人马座星系,也被称作箭星系。同时也带来了另一个惊喜,此次伽马射线暴相比以往离地球更近。参加测量的西北大学学生吉利安·拉斯蒂内贾德说,该射线产生于大质量恒星的坍塌,这些恒星寿命很短。它们遵循宇宙中恒星的形成历史,所以恒星的形成越激烈,这些爆发也越多,大约是宇宙年龄的一半。然而,这次伽马射线暴发生时间较晚,距离我们更近。天文学家推测GRB221009A来源于地球外24亿光年处,此前也观察过更近距离的射线暴,但这次能量高显得非常突出。“正是由于足够耀眼,我们有充足的时间挖掘更多细节”,布兰登·奥康纳指出,“目前至少有50台望远镜在全波段观测,我们能够最大限度地利用科学技术”。实际上射线暴仅仅维持数分钟,但余波影响可持续数周。此外科学家们也致力于寻找超新星引发的爆炸,它向外喷射物质的速度更慢。布兰登·奥康纳说,我们目前的理解是大质量恒星向内坍缩形成黑洞,恒星的残骸不断被吸入,以喷流的形成从黑洞中喷射,并以接近光速运行,形成了伽马射线暴。同时,一部分残骸向外反弹,以较慢的速度运行,形成了超新星爆炸。图 3 最强伽马射线暴引燃的宇宙尘埃环(图片来源:NASA/Swift/A. Beardmore (英国莱斯特大学))最初形成的伽马射线暴与周围物质作用形成余波,拉斯蒂内贾德表示,该波长横跨电磁波范畴,在X射线和无线电波区域最适宜观察,科学家仍致力于观测射线余波,它首先被宇航局伽马射线追踪卫星Swift拍摄到,在爆炸后几小时在源头周围形成彩色环。望远镜现在可以看到GRB221009A处超新星爆炸的最初迹象,拉斯蒂内贾德指出,未来几周爆炸现象将完全呈现在我们面前,但由于爆炸源位置受限,我们可能无法看到整个超新星爆炸消亡。它逐渐去往太阳后方,所以持续到今年11底,我们在明年2月才能再次观测。她指出,2023年宇航局詹姆斯·韦伯和哈勃太空望远镜将一同加入该项工作,分别贡献出它们超强的光学和红外探测能力。探索爆炸产生的能量是一个标志性事件,对于探究其中的化学物质亦是如此,我们对于宇宙中一些重元素的产生仍不清楚,研究超新星有助于我们破解谜题。图 4 新生黑洞形成强大的伽马射线喷流(图片来源:NASA/ESA/M. Kornmesser)20世纪60年代,用于窥视苏联核试验的军用卫星偶然发现了伽马射线,几十年间伽马射线仍是一个谜题,直到90年代,科学家们首次意识到,隐藏在宇宙中各个角落的伽马射线可能与恒星坍缩有关。目前大量关于伽马射线的理解,仍然是基于理论计算和模拟,科学家们相信此次伽马射线暴将很好地修正之前的理论。科学家们将充分抓住这千载难逢的机会,未来几个月将有海量的文章发表出来。尽管能量类似的爆炸为科学研究带来了福音,但科学家们并不希望这类大爆炸发生在地球附近,最好也不要在我们的星系中。科学家们认为从几千光年外射向地球的伽马射线会破坏臭氧层,引发大气变化最终产生冰河时代。事实上,一次类似的伽马射线暴造成了地球上五大物种灭绝事件之一约4.4亿年前的奥陶纪物种大灭绝。“幸运的是,此次喷流产生的伽马射线暴非常狭窄,只有几度宽”,布兰登·奥康纳表示,“如果它恰好发生在我们星系,直指我们,那可就危险了,不过好在这类现象发生的概率极低”。补充解释:① NOIRLab:National Optical-Infrared Astronomy Research Laboratory国家光学红外天文研究实验室② NSF:National Science Foundation 国家科学基金会③ AURA:Association of Universities for Research in Astronomy大学天文研究联合组织④ 太电子伏特亦即兆兆电子伏特,10^12 ev⑤ LHC:Large Hadron Collider 大型强子对撞机⑥ Swift:Swift Gamma-ray Burst Explorer 雨燕γ射线暴探测器BY: Tereza PultarovaFY: gxm ... PC版: 手机版:

封面图片

万寿无疆: 迄今为止最精确的原子图像,由相对论重离子对撞机(RHIC)拍摄

万寿无疆: 迄今为止最精确的原子图像,由相对论重离子对撞机(RHIC)拍摄 OO: 609 XX: 36 9号蛋友: 有巨佬给大致解读下不 OO: 83, XX: 0 星汉如斯: 这是拍的?感觉像建模的 OO: 66, XX: 1 勇敢的骚年: 这不是原子图像。而是金离子对撞之后的粒子碎片在探测器中的移动轨迹。利用这个轨迹可以反推微观粒子在撞击之前的准确信息,也就是原子核的信息。这张图相当于你做CT时机器接收到的X光原始数据,需要再度运算成像才能得到身体剖面的图片。 OO: 42, XX: 0 蛋友e5e2e28d0c666: 不懂就问万能蛋友,所以炫彩毛发是电子瞬时划过的轨迹还是? OO: 29, XX: 1

封面图片

NASA费米望远镜发现附近超新星并没有发出伽马射线

NASA费米望远镜发现附近超新星并没有发出伽马射线 2023 年对风车星系中的超新星 SN 2023ixf 的观测为研究宇宙射线的产生提供了一个独特的机会,但是 NASA 的费米望远镜并没有探测到预期的伽马射线,这表明能量转换率比预期的要低得多。资料来源:美国国家航空航天局2023年5月18日,一颗超新星在附近的风车星系(Messier 101)爆发,它位于大约2200万光年外的大熊座。这颗超新星被命名为SN 2023ixf,是自2008年费米探测器发射以来发现的附近最亮的超新星。意大利里雅斯特大学研究员吉列姆-马蒂-德韦萨说:"天体物理学家以前估计,超新星将其总能量的大约 10%转化为宇宙射线加速度。但我们从未直接观测到这一过程。通过对SN 2023ixf的新观测,我们的计算结果是爆炸后几天内的能量转换率低至1%。这并不排除超新星是宇宙射线工厂的可能性,但这确实意味着我们还有更多关于超新星产生的知识要学习。"这篇论文由马丁-德维萨在奥地利因斯布鲁克大学(University of Innsbruck)期间发表,将刊登在未来出版的《天文学与天体物理学》(Astronomy and Astrophysics)杂志上。即使没有探测到伽马射线,美国宇航局的费米伽马射线太空望远镜也能帮助天文学家了解更多有关宇宙的信息。资料来源:美国宇航局戈达德太空飞行中心宇宙射线及其起源每天,数以万亿计的宇宙射线与地球大气层发生碰撞。其中大约 90% 是氢原子核(或质子),其余的是电子或较重元素的原子核。自 20 世纪初以来,科学家们一直在研究宇宙射线的起源,但这些粒子无法追溯到它们的源头。由于宇宙射线带电,它们在飞往地球的途中会因遇到磁场而改变方向。位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的费米项目科学家伊丽莎白-海斯说:"然而,伽马射线会直接射向我们。宇宙射线在与周围环境中的物质相互作用时会产生伽马射线。费米望远镜是轨道上最灵敏的伽马射线望远镜,因此当它没有探测到预期的信号时,科学家必须对这种缺失做出解释。解开这个谜团,就能更准确地了解宇宙射线的起源。"弗雷德-劳伦斯-惠普尔天文台(Fred Lawrence Whipple Observatory)的48英寸望远镜在2023年6月捕捉到了这张风车星系(Messier 101)的可见光图像。超新星2023ixf的位置被圈了起来。天文台位于亚利桑那州的霍普金斯山上,由哈佛天体物理学中心和史密森尼天文台共同运营。资料来源:平松等人,2023/Sebastian Gomez (STScI)作为宇宙射线加速器的超新星长期以来,天体物理学家一直怀疑超新星是宇宙射线的主要贡献者。当一颗质量至少是太阳 8 倍的恒星耗尽燃料时,就会发生这种爆炸。内核坍缩,然后反弹,推动冲击波向外穿过恒星。冲击波加速粒子,产生宇宙射线。当宇宙射线与恒星周围的其他物质和光线碰撞时,就会产生伽马射线。超新星会极大地影响星系的星际环境。它们的爆炸波和不断膨胀的碎片云可能会持续存在 5 万年以上。2013年,费米测量显示,银河系中的超新星残骸正在加速宇宙射线,当它们撞击星际物质时,会产生伽马射线光。但天文学家说,这些残余物并没有产生足够的高能粒子,无法与科学家在地球上的测量结果相匹配。一种理论认为,超新星可能会在最初爆炸后的几天或几周内加速银河系中能量最高的宇宙射线。但是超新星非常罕见,在银河系这样的星系中,一个世纪才会发生几次。在大约3200万光年的距离内,超新星平均每年只发生一次。从可见光望远镜第一次看到 SN 2023ixf 开始,经过一个月的观测,费米没有探测到伽马射线。挑战与未来研究合著者、法国国家科学研究中心下属蒙彼利埃宇宙与粒子实验室的天体物理学家马蒂厄-雷诺(Matthieu Renaud)说:"不幸的是,看不到伽马射线并不意味着没有宇宙射线。我们必须对所有有关加速机制和环境条件的基本假设进行研究,才能将伽马射线的缺失转化为宇宙射线产生的上限。"研究人员提出了几种可能影响费米观测到该事件产生的伽马射线的情况,比如爆炸碎片的分布方式和恒星周围物质的密度。费米的观测首次为研究超新星爆炸后的状况提供了机会。以其他波长对SN 2023ixf进行的更多观测、基于这一事件的新模拟和模型,以及未来对其他年轻超新星的研究,都将帮助天文学家找到宇宙宇宙射线的神秘来源。费米是戈达德管理的一个天体物理学和粒子物理学合作项目。费米项目是与美国能源部合作开发的,法国、德国、意大利、日本、瑞典和美国的学术机构和合作伙伴也做出了重要贡献。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

下一个太阳极盛期能否解开太阳伽马射线图像之谜?

下一个太阳极盛期能否解开太阳伽马射线图像之谜? 太阳在 2013 年 10 月至 2015 年 1 月期间发射的伽马射线彩色密度图,每光子能量介于 5 和 150 千兆电子伏特之间,由 NASA 的费米-LAT 望远镜记录。它叠加在美国宇航局太阳动力学天文台于 2014 年 12 月获得的太阳紫外线假彩色图像上。资料来源:Arsioli and Orlando 2024 & NASA/SDO/Duberstein在上一次太阳极大期,太阳两极地区的高能辐射最为活跃,这一现象至今仍无法解释。葡萄牙里斯本大学(Ciências ULisboa)科学学院的一位研究人员率先进行的一项研究报告了这一发现。发表在《天体物理学杂志》上的一项新研究制作了一部用伽马射线观测太阳十四年的压缩影片,这一可视化工具显示,与这些高能光子的预期均匀分布相反,太阳圆盘在极地地区会变得更亮。在太阳活动高峰期,太阳在伽马射线中的光辉在最高纬度地区占主导地位的趋势非常明显,2014年6月的情况就是如此。了解伽马射线发射这项研究由葡萄牙天体物理学和空间科学研究所(IA)的布鲁诺-阿西奥利(Bruno Arsioli)和里斯本大学科学学院(Ciências ULisboa)领导,它可能有助于人们了解使太阳发出比物理学家预期亮十倍的伽马射线的未知过程。它还可以为空间天气预报提供信息。太阳伽马射线产生于我们恒星的光环和太阳耀斑中,也从恒星表面释放出来。最新的伽马射线是这项研究的重点。布鲁诺-阿西奥利(Bruno Arsioli)说:"太阳受到来自银河系外各个方向的接近光速的粒子的袭击。这些所谓的宇宙射线是带电的,会被太阳的磁场偏转。那些与太阳大气相互作用的粒子会产生伽马射线雨。"美国宇航局费米伽马射线太空望远镜的艺术家概念图。费米望远镜每隔三小时就会在地球轨道上扫描整个天空。图片来源:NASA 戈达德太空飞行中心/Chris Smith (USRA)科学家们认为,这些伽马射线雨在太阳圆盘的任何地方出现的几率都是相同的。这项研究表明,宇宙射线可能会与太阳的磁场相互作用,从而产生伽马射线分布,而这种分布在恒星的各个纬度上并不均匀。布鲁诺-阿西奥利补充说:"我们还检测到了两极之间的能量差异。在南极,能量较高的光子(20 到 150 千兆电子伏特)发射过剩,而能量较低的光子大多来自北极。"科学家们还无法解释这种不对称现象。在太阳活动周期的最大值期间,伽马射线更频繁地辐射到高纬度地区。2014年6月,太阳磁场发生逆转时,伽马射线尤其集中在太阳两极。这是指太阳磁场偶极子交换其两个符号,众所周知,这种奇特的现象发生在太阳活动的高峰期,每十一年一次。太阳活动与磁场动力学"我们发现的结果挑战了我们目前对太阳及其环境的理解,"这项研究的共同作者、的里雅斯特大学、INFN 和斯坦福大学的埃莱娜-奥兰多(Elena Orlando)说。"我们证明了太阳伽马射线发射的不对称性与太阳磁场翻转之间存在很强的相关性,这揭示了太阳天文学、粒子物理学和等离子体物理学之间可能存在的联系"。所使用的数据来自伽马射线卫星费米大面积望远镜(Fermi-LAT)在 2008 年 8 月至 2022 年 1 月期间长达 14 年的观测。这一时期涵盖了一个完整的太阳周期,从最低点到下一个太阳周期,2014 年达到顶峰。挑战之一是将太阳辐射与背景天空中其他众多伽马射线源区分开来,这些伽马射线源与太阳的明显轨迹交叉。布鲁诺-阿西奥利(Bruno Arsioli)和他的同事埃莱娜-奥兰多(Elena Orlando)制作了一个工具,将所有太阳伽马射线事件整合在一个400至700天的窗口内,这个窗口可以在14年期间滑动。通过这种可视化,极地过量的时刻以及南北能量差异变得清晰可见。"研究太阳的伽马射线辐射是研究和了解恒星大气层物理过程的一个新窗口,"阿西奥利说。"在两极产生这些过量伽马射线的过程是什么?也许除了宇宙射线与太阳表面的相互作用之外,还有其他产生伽马射线的机制"。然而,如果我们坚持研究宇宙射线,它们可能会成为太阳内部大气层的探测器。对这些费米-LAT观测数据的分析还激发了一种新的理论方法,这种方法应该考虑对太阳磁场进行更详细的描述。太阳伽马射线的产生与太阳耀斑和日冕物质抛射更为频繁的壮观时期之间可能存在的联系,以及这些联系与我们恒星磁性构造的变化之间可能存在的联系,可能是改进预测太阳活动的物理模型的一个要素。这些都是空间天气预报的基础,对保护空间卫星上的仪器和地球上的电信及其他电子基础设施至关重要。布鲁诺-阿西奥利说:"2024年和明年,我们将经历一个新的太阳极大期,太阳磁极的另一次倒转已经开始。我们预计到 2025 年底将重新评估磁场反转之后,两极是否会出现伽马射线发射过剩的情况。"埃莱娜-奥兰多补充道:"我们已经找到了揭开这个谜团的钥匙,这为我们指明了未来的方向。费米望远镜将在未来几年内运行并观测太阳,这一点至关重要。"但是,太阳伽马射线可能有更多的信息需要揭示和进一步关注。现在发表的这项研究将加强下一代伽马射线空间观测站对太阳进行持续监测的科学依据。如果高能辐射确实携带着太阳活动的信息,那么下一次任务就应该计划提供太阳伽马射线辐射的实时数据。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜拍摄到的标志性图像出现在美国邮政新邮票上

韦伯望远镜拍摄到的标志性图像出现在美国邮政新邮票上 美国邮政于2024年1月22日发行了一枚优先邮件邮票,图案是美国国家航空航天局(NASA)詹姆斯-韦伯太空望远镜(James Webb Space Telescope)的创世之柱(Pillars of Creation)。美国邮政的艺术总监格雷格-布里丁(Greg Breeding)设计了这枚邮票,图片由美国国家航空航天局(NASA)、欧洲航天局(ESA)、加空间局(CSA)和太空望远镜科学研究所(Space Telescope Science Institute)提供。图片来源:美国邮政这些图像是由韦伯望远镜的两台仪器拍摄的,其中包括由美国宇航局喷气推进实验室建造并负责发射管理的近红外成像仪。"美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜是科学、工程和艺术的完美结合,它通过捕捉到的美丽图像揭示了宇宙中最伟大的秘密,"位于华盛顿的NASA总部科学任务局副局长尼古拉-福克斯(Nicola Fox)说。"有了这些邮票,全国各地的人们就可以用自己的指尖捕捉韦伯迷人的图像以及它们所代表的令人难以置信的科学,并知道自己也是这个开创性的天文学新时代的一部分。"美国邮政于2024年1月22日发行了一枚"优先邮件快递"邮票,突出展示了美国国家航空航天局詹姆斯-韦伯太空望远镜拍摄的船底座星云图像。美国邮政服务公司艺术总监格雷格-布里丁(Greg Breeding)设计了这枚邮票,图片由美国国家航空航天局、欧洲航天局、加空局和太空望远镜科学研究所提供。图片来源:美国邮政第一枚新邮票是一枚"优先邮件快递"邮票,图案是韦伯的近红外相机(NIRCam)拍摄的船底座星云中的"宇宙悬崖"图像,该星云位于大约7600光年之外。该图像显示了新出现的恒星苗圃和之前被隐藏起来的单个恒星。这一场景是韦伯望远镜于2022年7月首次曝光的全彩图像之一,展示了该望远镜窥探宇宙尘埃的能力,为我们揭示恒星的形成过程提供了新的视角。另一枚邮票是优先邮件邮票,图案是韦伯的中红外成像仪(MIRI)捕捉到的"创世之柱"图像。美国国家航空航天局的哈勃太空望远镜首次让这一熟悉的景观声名鹊起,韦伯拍摄到的图像显示,气体和尘埃簇拥着正在缓慢形成的恒星,这些恒星已经形成了上千年。创世之柱位于 6500 光年之外的巨大星云中。这些新邮票将与美国邮政于 2022 年发行的一枚永久邮票一起,以艺术家的数字插画韦伯为背景,衬以满天繁星。美国邮政发行的这枚邮票是为了纪念韦伯的成就,因为它将继续执行探索宇宙未知和研究宇宙历史各个阶段的任务。韦伯已经揭开了迄今为止观测到的一些最远星系、恒星和黑洞的神秘面纱;解开了一个关于早期宇宙的长期谜团;让我们比以往任何时候都更详细地了解了太阳系外行星的大气层;并为我们自己的宇宙后院提供了新的视角和见解。 ... PC版: 手机版:

封面图片

博主放出迄今为止最恐怖的太空照片之一:人类首次无系绳行走

博主放出迄今为止最恐怖的太空照片之一:人类首次无系绳行走 至于为何恐怖,是因为这是人类历史上首次无系绳太空行走,整个人悬浮在黝黑的太空中,背后就是蔚蓝的地球,他就像是一颗卫星,显得格外渺小,而且又很无助。据了解,最早在科学意义上提出太空行走设想的是俄罗斯科学家齐奥尔科夫斯基,在他撰写的《太空旅行》一书中,不仅提出了人在太空行走的可能性,而且还提出实现太空行走必须要给行走者提供航天服、气闸舱和安全绳索。没想到这个构想竟然被美国宇航员率先实现,1984年2月7日,美国“挑战者”号航天飞机的两名宇航员麦坎德利斯和斯图尔特先后实现在太空行走。麦坎德利斯背着喷气背包出舱,从背包里喷发出的氮气推动他漂浮在航天飞机320英尺(约97米)之外,90分钟后,他成功返回,并将背包交给了另一宇航员斯图尔特,斯图尔特出舱后,在距离航天飞机92米远的距离待了65分钟。这张更远视角的照片更具视觉冲击力听起来非常简单,但这背后蕴藏着巨大的风险,要知道那可是在上世纪80年代。无绳子牵引在太空漂浮,就像是“不会水的人第一次下海,松开手里抓的游泳圈一般”,一旦失误,那么就注定永驻太空,以当时的技术想要完成救援,基本不可能。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人