科学家发明从海水中提取铀用于核能的新技术

科学家发明从海水中提取铀用于核能的新技术 核能反应堆释放原子内部自然储存的能量,并通过将原子真正击碎这一过程被称为裂变将其转化为热能和电能。铀是这一过程中最受欢迎的元素,因为它的所有形态都具有不稳定性和放射性,很容易分裂。目前,这种金属是从岩石中提取的,但铀矿储量有限。然而,据核能机构估计,有 45 亿吨铀以溶解铀酰离子的形式漂浮在我们的海洋中。这一储量是陆地上储量的 1000 多倍。但事实证明,提取这些离子具有挑战性,因为提取材料没有足够的表面积来有效捕获离子。因此,东北师范大学化学学院的Rui Zhao, Guangshan Zhu及其同事希望开发一种具有大量微观角落和缝隙的电极材料,用于电化学捕获海水中的铀离子。这种新型涂层布能有效地在其表面积聚来自含铀海水的铀(黄色)。来源:改编自《美国化学学会中心科学》,2023 年,DOI: 10.1021/acscentsci.3c01291为了制作电极,研究小组首先使用碳纤维编织的柔性布。他们在布上涂上两种特殊的单体,然后进行聚合。接着,他们用盐酸羟胺处理布,在聚合物中加入脒肟基团。布的天然多孔结构为脒肟创造了许多微小的口袋,使其可以嵌套在其中,从而轻松捕获铀离子。在实验中,研究人员将涂层布作为阴极放入天然海水或加铀的海水中,再加上一个石墨阳极,并在电极之间运行循环电流,随着时间的推移,阴极布上积累了亮黄色的铀基沉淀物。在使用从渤海收集的海水进行的测试中,每克涂层活性材料在 24 天内提取了 12.6 毫克铀。涂层材料的提取能力高于研究小组测试的大多数其他铀提取材料。此外,使用电化学方法捕获离子的速度比让离子在布上自然积聚的速度快三倍左右。研究人员说,这项工作提供了一种从海水中捕获铀的有效方法,这可能会使海洋成为新的核燃料供应地。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家发现新型锂离子导体 可用于强化电动汽车电池

科学家发现新型锂离子导体 可用于强化电动汽车电池 利物浦大学的一个团队开发出了一种新型固态锂离子导体,可以取代电池中的液态电解质,从而提高安全性和效率。图片表示锂离子(蓝色)在结构上移动。资料来源:利物浦大学这种新材料由无毒的地球富集元素组成,具有足够高的锂离子传导性,可以取代目前锂离子电池技术中的液态电解质,提高安全性和能量容量。该大学的跨学科研究团队采用变革性科学方法来设计这种材料,他们在实验室中合成了这种材料,确定了它的结构(原子在空间中的排列),并在电池中进行了演示。这种新材料是极少数能达到足以取代液态电解质的高锂离子电导率的固体材料之一,并且由于其结构而能以一种新的方式工作。这一发现是通过合作计算和实验工作流程实现的,该流程利用人工智能和基于物理学的计算来支持大学化学专家的决策。这种新材料为化学优化提供了一个平台,以进一步提高材料本身的性能,并根据研究提供的新认识来确定其他材料。利物浦大学化学系马特-罗森斯基(Matt Rosseinsky)教授说:"这项研究展示了一种新型功能材料的设计和发现。这种材料的结构改变了人们以往对高性能固态电解质的理解。具体来说,具有多种不同移动离子环境的固体可以表现出很好的性能,而不仅仅是离子环境范围很窄的少数固体。这极大地开拓了进一步发现的化学空间。"最近的报道和媒体报道预示着人工智能工具已被用于寻找潜在的新材料。在这种情况下,人工智能工具是独立工作的,因此很可能会以各种方式重现它们接受过的训练,生成的材料可能与已知材料非常相似。"这篇发现研究论文表明,人工智能和由专家调配的计算机可以解决现实世界材料发现的复杂问题,在这个问题上,我们寻求的是成分和结构上有意义的差异,其对性能的影响要根据理解来评估,我们的颠覆性设计方法为发现这些以及其他依赖离子在固体中快速运动的高性能材料提供了一条新的途径"。这项研究由利物浦大学化学系、材料创新工厂、利弗胡尔姆功能材料设计研究中心、史蒂芬森可再生能源研究所、阿尔伯特-克鲁中心和工程学院的研究人员共同努力完成。并得到了工程与物理科学研究理事会(EPSRC)、勒弗胡尔姆信托基金会(Leverhulme Trust)和法拉第研究所(Faraday Institution)的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家确定可用于搭建月球和火星建筑的潜在溶剂

科学家确定可用于搭建月球和火星建筑的潜在溶剂 这项工作由华盛顿州立大学机械与材料工程学院副教授苏米克-班纳吉(Soumik Banerjee)领导,在《物理化学杂志B》(Journal of Physical Chemistry B)上进行了报道。被称为离子液体的强力溶剂是处于液态的盐。"机器学习工作把我们从 2 万英尺的高度降到了 1000 英尺的水平,"Banerjee 说。"我们能够非常快速地向下选择大量离子液体,然后我们还能科学地理解决定溶剂是否能够溶解材料的最重要因素。"美国国家航空航天局(NASA)资助了Banerjee的工作,作为其Artemis任务的一部分,NASA希望将人类送回月球,然后再送往火星等更深的太空。但是,要使这样的长期任务成为可能,宇航员就必须利用这些地外环境中的材料和资源,使用3D打印技术利用从月球或火星土壤中提取的基本元素制造结构、工具或零件。Banerjee说:"对美国国家航空航天局来说,原地资源利用是未来几十年的一件大事。否则,我们将需要从地球运载高得吓人的材料"。获取这些建筑材料必须以环保和节能的方式进行。开采元素的方法也不能使用水,因为月球上没有水。Banerjee 的研究小组十多年来一直在研究用于电池的离子液体,这可能就是答案。然而,在实验室测试每种候选离子液体既昂贵又耗时,因此研究人员利用机器学习和原子级别的建模技术,从数十万种候选离子液体中筛选出了几种。他们寻找那些可以消化月球和火星材料,提取铝、镁和铁等重要元素,可以自我再生,或许还能产生氧气或水作为副产品,帮助提供生命支持的离子液体。在确定溶剂所需的优良品质后,研究人员找到了大约六种非常理想的候选溶剂。成功的重要因素包括组成盐的分子离子的大小、表面电荷密度(即离子单位面积上的电荷)以及离子在液体中的流动性。在另一项研究中,研究人员与科罗拉多大学的研究人员合作,在实验室中测试了几种离子液体溶解化合物的能力。他们希望最终能建造一个实验室规模或中试规模的反应器,并用从月球获取到的材料测试候选溶剂。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发明冷等离子喷射敷料 专注于慢性伤口治疗

科学家发明冷等离子喷射敷料 专注于慢性伤口治疗 为此,南澳大利亚大学(Uni SA)的研究人员研究了一种控制感染和促进愈合的新技术:一种由冷等离子电离气体激活的水凝胶。该研究的通讯作者 Endre Szili 说:"抗生素和银敷料常用于治疗慢性伤口,但两者都有缺点。抗生素的抗药性不断增加是一个全球性挑战,银引起的毒性也令人十分担忧。在欧洲,银敷料正逐渐被淘汰。"以前的研究已经证明了使用冷等离子电离气体促进伤口愈合的好处,即减少细菌负荷,并通过激活环境空气中的氧分子和氮分子产生活性氧和氮物种(RONS)。到目前为止,水凝胶在涂抹到伤口上之前已被等离子体产生的 RONS 所负载,但这一过程并不完美。"尽管最近在使用等离子活化水凝胶疗法(PAHT)方面取得了令人鼓舞的成果,但我们在为水凝胶加载临床使用所需的足够浓度的 RONS 方面仍面临挑战,"Szili 说。"我们采用了一种新的电化学方法来增强水凝胶的活化,从而克服了这一障碍。"研究人员使用聚乙烯醇(PVA)制作了水凝胶,因为这种凝胶已被广泛批准用于医疗保健领域,而且具有出色的机械和生物相容性。用氦等离子喷射器处理 PVA 水凝胶,使其活化,产生 RONS。8% 的 PVA 水凝胶被确定为 PAHT 敷料的最佳选择,因为它可以很容易地被等离子体产生的 RONS 激活,同时保持其结构完整性、保形性和膨胀能力。研究人员将水凝胶置于铝板上方,使等离子体羽流在处理过程中与水凝胶保持接触,然后比较了两种技术,以了解是否可以通过电化学方法提高 RONS 的产生:一种是通过断开铝板与接地导线的连接使水凝胶保持"浮动电位",另一种是将水凝胶"接地"。a)"浮动电位"和 b)"接地"配置下处理过程中的等离子射流照片 萨布林等人将等离子处理过的水凝胶培养三小时,研究过氧化氢(H2O2)和氧化亚氮(NO2-)的释放情况,这两种物质分别被用作总活性氧(ROS)和活性氮(RNS)的标记。研究人员发现,在等离子处理过程中将水凝胶接地可显著提高H2O2的产生,而在处理过程中对凝胶进行水合处理可进一步提高H2O2的产生。此外,等离子射流-水凝胶界面的湿度与H2O2生成的增加密切相关。至于 NO2-,接地增加了湿度的产生,而水合的影响可以忽略不计。在体外实验中,这种水凝胶能非常有效地控制大肠杆菌和绿脓杆菌的生长,而这两种细菌是糖尿病足溃疡中常见的细菌。研究人员表示,虽然这项研究的重点是糖尿病伤口,但该技术可用于治疗所有慢性伤口和内部感染。Szili说:"我们的PAHT技术的一大优势是,它可用于治疗所有伤口。这是一种环保安全的治疗方法,它利用空气和水中的天然成分来制造活性成分,活性成分会降解为无毒和生物兼容的成分"。下一步是进行临床试验,以优化电化学技术,用于治疗人类患者。今后,研究人员将研究如何利用这项技术,通过激活注入人体的水凝胶中的药物来治疗癌症肿瘤。Szili说:"活性成分可以长期输送,改善治疗效果,并有更大的机会穿透肿瘤。血浆在医疗领域有着巨大的潜力,而这只是冰山一角。"这项研究发表在《先进功能材料》杂志上。 ... PC版: 手机版:

封面图片

科学家找到从农业废弃物中提取与制造聚酰胺的新方法

科学家找到从农业废弃物中提取与制造聚酰胺的新方法 聚酰胺具有韧性和柔韧性,可以扭曲和编织而不会断裂。图片来源:Lorenz Manker/EPFL这项发表在《自然-可持续发展》(Nature Sustainability)杂志上的研究介绍了一种利用从农业废弃物中提取的糖核制造聚酰胺的新方法,聚酰胺是一类以强度和耐久性著称的塑料,其中最著名的是尼龙。这种新方法利用了一种可再生资源,同时还能高效地实现这种转变,并将对环境的影响降到最低。高精度挤出 3D 打印长丝。图片来源:Lorenz Manker/EPFL环境效益和效率Luterbacher 说:"典型的化石基塑料需要芳香族基团来赋予塑料刚性这使塑料具有硬度、强度和耐高温等性能特性。在这里,我们得到了类似的结果,但使用的是糖结构,这种结构在自然界中无处不在,而且通常完全无毒,可以提供刚性和性能特性。"该研究的第一作者洛伦兹-曼克(Lorenz Manker)和他的同事们开发出了一种无催化剂工艺,可将木糖二甲基乙二酸酯(一种直接从木材或玉米棒等生物质中提取的稳定碳水化合物)转化为高质量的聚酰胺。该工艺的原子效率高达 97%,令人印象深刻,这意味着几乎所有的起始材料都被用于最终产品,从而大大减少了浪费。挤压后的染色和天然聚酰胺纤维。图片来源:Lorenz Manker/EPFL生物基聚酰胺的性能可与化石基聚酰胺相媲美,为各种应用提供了一种前景广阔的替代材料。更重要的是,这些材料在多次机械循环中表现出显著的弹性,保持了其完整性和性能,而这正是管理可持续材料生命周期的关键因素。这些创新型聚酰胺的潜在应用领域非常广泛,从汽车零件到消费品,都能显著减少碳足迹。研究小组的技术经济分析和生命周期评估表明,与包括尼龙(如尼龙 66)在内的传统聚酰胺相比,这些材料的价格具有竞争力,全球变暖潜能值最高可降低 75%。编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家发明了不会起火的可回收“水电池” 容量大、寿命长

科学家发明了不会起火的可回收“水电池” 容量大、寿命长 首席研究员、特聘教授马天一说,他们的电池处于水性储能设备这一新兴领域的最前沿,取得的突破大大提高了该技术的性能和寿命。皇家墨尔本理工大学理学院的 Ma 说:"我们设计和制造的是水金属离子电池,也可以称之为水电池。"该团队用水来替代有机电解质,使电流在正负极之间流动,这意味着他们的电池不会像锂离子电池那样起火或爆炸。Ma 表示:"我们的电池可以安全地拆卸,其材料可以重复使用或回收,从而解决了全球消费者、工业界和政府在使用现有储能技术时所面临的报废处理难题。我们使用的镁和锌等材料在自然界中含量丰富、价格低廉,而且与其他种类电池中使用的替代品相比毒性较低,这有助于降低制造成本,减少对人类健康和环境的风险。"水电池制造工艺的简易性有助于实现大规模生产。能量储存和生命周期潜力如何?该团队制作了一系列小规模试验电池,用于多项同行评审研究,以应对各种技术挑战,包括提高储能能力和寿命。在发表于《先进材料》(Advanced Materials)的最新研究成果中,他们战胜了一个重大挑战枝晶,一种破坏性树枝状突起的生长,这种尖刺状金属突起可能导致短路和其他严重故障。研究小组在受影响的电池部件上涂上了一种名为铋的金属及其氧化物(又称铁锈),作为防止枝晶形成的保护层。结果呢?"现在,我们的电池寿命大大延长,可与市场上的商用锂离子电池媲美,是实际应用中高速和高强度使用的理想选择。凭借惊人的容量和更长的使用寿命,我们不仅推进了电池技术的发展,还成功地将我们的设计与太阳能电池板整合在一起,展示了高效、稳定的可再生能源存储。"该团队的水电池在能量密度方面正在缩小与锂离子技术的差距,目的是尽可能减少单位电量所占用的空间。"我们最近制造了一种镁离子水电池,其能量密度为每公斤 75 瓦时(Wh kg-1),比最新的特斯拉汽车电池高出 30%"。皇家墨尔本理工大学特聘教授马天一(左)和朱凌峰博士与团队的水电池。图片来源:皇家墨尔本理工大学 Carelle Mulawa-Richards这项研究发表在《小型结构》上。"下一步是通过开发新的纳米材料作为电极材料,提高我们水电池的能量密度"。Ma 说,镁可能是未来水电池的首选材料。"镁离子水电池有可能在短期内(比如一到三年)取代铅酸电池,并有可能在长期(5 到 10 年后)取代锂离子电池。镁比锌和镍等替代金属更轻,具有更大的潜在能量密度,将使电池充电时间更快,更有能力支持耗电设备和应用。"潜在应用Ma 说,团队的电池非常适合大规模应用,是电网存储和可再生能源集成的理想选择,尤其是在安全方面。随着技术的进步,其他类型的较小规模储能应用,如为人们的家庭和娱乐设备供电,可能会成为现实。作为澳大利亚研究理事会联系项目的一部分,Ma 的团队与行业合作伙伴、位于悉尼的技术创新企业 GrapheneX 合作,不间断开发水电池。"我们还与澳大利亚、美国、英国、日本、新加坡、中国和其他国家的知名大学和研究机构的研究人员和专家密切合作。这些合作促进了知识交流和尖端设施的使用。通过利用这个全球团队在不同领域的专业知识,我们可以从不同角度应对所涉及的复杂挑战"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出能产生34倍于自身重量力量的人造肌肉装置

科学家开发出能产生34倍于自身重量力量的人造肌肉装置 研究人员利用离子聚合物人造肌肉开发出了一种软流体开关,它能以超低功率运行,产生的力是其重量的 34 倍。这一突破通过精确控制狭窄空间中的流体流动,为软机器人、生物医学设备和微流体技术提供了潜在应用。上图描述了在超低电压下使用软流体开关分离液滴的过程。资料来源:KAIST 软机器人与智能材料实验室韩国科学技术院(KAIST)(院长 Kwang-Hyung Lee)1 月 4 日宣布,机械工程系 IlKwon Oh 教授领导的一个研究小组开发出了一种软流体开关,它能在超低电压下工作,并能在狭窄空间内使用。现代科技中的人造肌肉人造肌肉模仿人类肌肉,与传统电机相比能提供灵活自然的运动,是软体机器人、医疗设备和可穿戴设备的基本元素之一。这些人造肌肉会根据电、气压和温度变化等外部刺激产生运动,要利用人造肌肉,必须对这些运动进行精确控制。基于现有电机的开关因其刚性和体积大而难以在有限的空间内使用。为了解决这些问题,研究团队开发了一种电离子软致动器,即使在狭窄的管道中也能控制流体流动,同时产生较大的力,并将其用作软流体开关。合成 pS-COF 并将其用作电活性软流体开关的普通电极-电解质宿主。A) pS-COF 的合成示意图。B) 电化学软开关的工作原理示意图。C) 使用基于 pS-COF 的电化学软开关在动态操作中控制流体流动的原理图。资料来源:KAIST 软机器人与智能材料实验室。研究小组开发的离子聚合物人工肌肉由金属电极和离子聚合物组成,在通电后会产生力和运动。人工肌肉电极表面由有机分子组合而成的多磺化共价有机框架(pS-COF)被用来以超低功率(~0.01V)产生相对于其重量的巨大力量。结果制造出的厚度为 180 微米、细如发丝的人造肌肉在启动平滑运动时产生的力比其 10 毫克的轻重量大 34 倍多。因此,研究小组能够以较低的功率精确控制流体的流动方向。领导这项研究的IlKwon Oh教授说:"以超低功率运行的电化学软流体开关可以为基于流体控制的软机器人、软电子学和微流体学领域带来许多可能性。从智能纤维到生物医学设备,这项技术有可能立即在各种工业环境中投入使用,因为它可以轻松应用于我们日常生活中的超小型电子系统。" ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人