可持续工艺将污水污泥转化为高价值活性炭

可持续工艺将污水污泥转化为高价值活性炭 近年来,热解(在惰性气氛中对材料进行高温热分解)作为一种将污水污泥转化为有价值的活性炭的方法,引起了人们的兴趣。由于在这一过程是否可行的问题上还存在很大的知识空白,因此研究人员从这里入手。研究人员使用通过生物工艺(利用微生物净化废水)处理过的原污水污泥,首先在炉子里烘干污泥,去除其中的高水分。然后,将干燥后的产品在研磨机中研磨成粉末,并与活化剂混合。活化剂可激活或加速热化学反应,对于从污水污泥中获得活性炭至关重要。研究人员选择了氢氧化钾(KOH),因为它成本低、无污染,并尝试使用较低的比例,使该工艺更具可持续性,减少资源消耗、环境污染和最终生产成本。活化后,污泥粉末在无氧条件下进行热解碳化,然后加入盐酸处理,净化并消除某些矿物质。研究人员对污泥与 KOH 的不同混合比例、热解时间和温度目标进行了研究,以确定从污泥中生产高比表面活性炭的最佳方法。研究人员发现,将 KOH 的用量至少减少 50%,污泥与 KOH 的比例为 3:1,最高温度为 800 °C(1,472 °F)是最佳选择,每公斤(2.2 磅)污水污泥可产生 0.63 公斤(1.3 磅)活性炭。这也使得活性炭更加多孔,含碳量更高(62%)。由于活性炭用于空气和水的净化、气味控制和贵金属回收,其多孔性质非常重要,因为它能提高活性炭吸附气体和液体中化学物质的能力。该研究的通讯作者玛丽亚-安赫尔斯-马丁(María Ángeles Martín)说:"从实用的角度来看,提出可以在工业规模上实施的解决方案非常重要。这是文献中最简单的程序之一,使用的技术已经在工业规模的市场上存在"。研究人员对能量、质量和经济性进行计算后估计,利用湿污泥生产活性炭的成本为每公斤 17.53 欧元(18.91 美元)。他们表示,成本高的原因是污泥含水量高达 92%。如果在污水处理过程中使用离心分离法将湿度降低到 80%,他们估计每公斤活性炭的成本将降低 50%以上,为 8 欧元(8.63 美元)。现在,简化工艺已经通过测试,验证了从污水污泥中获得的活性炭的质量,研究人员计划开发这种材料的应用。这项研究发表在《环境管理杂志》上。 ... PC版: 手机版:

相关推荐

封面图片

Swisse吃油丸1⃣椰壳活性炭吸附摄入食物中的多余垃圾、杂质缓解大餐荤腻带来的“负重感”

Swisse吃油丸 1⃣椰壳活性炭吸附摄入食物中的多余垃圾、杂质缓解大餐荤腻带来的“负重感” 2⃣壳聚糖属于膳食纤维,帮助阻断油脂的吸收和清排可帮助抑制脂肪消化酶活性 从而影响小肠内脂肪的乳化吸收 3⃣牛蒡提取物含有植物膳食纤维能帮助提高肠道活力加速体内垃圾、杂质的清排 #保健品

封面图片

日本研究人员找到将塑料垃圾转化为化学宝藏的突破性新方法

日本研究人员找到将塑料垃圾转化为化学宝藏的突破性新方法 北海道大学的研究人员开发出了一种开创性的方法,通过利用塑料废弃物引发自由基链式反应来解毒有害化学物质,从而实现塑料废弃物的再利用。这种方法既提高了安全性和效率,又解决了塑料垃圾的环境问题,为可持续发展和具有经济吸引力的化学工艺铺平了道路。艺术想象图描绘了从塑料纤维中产生的被称为自由基的极高活性分子。图片来源:Koji Kubota 和 Hajime Ito北海道大学化学反应设计与发现研究所(WPI-ICReDD)的研究人员领导的研究小组开发出一种方法,利用普通塑料材料而不是潜在的爆炸性化合物来引发自由基链式反应。这种方法大大提高了过程的安全性,同时还提供了一种重新利用聚乙烯和聚醋酸乙烯等普通塑料的方法。这些研究成果已发表在《美国化学学会杂志》上。(上图)利用机械力引发自由基链式反应的一般方案。(下图)利用杂货袋碎片在球磨罐中引发反应。资料来源:Koji Kubota 等人,《美国化学学会杂志》。2023 年 12 月 22 日研究人员利用球磨机(一种在钢罐中快速摇动钢球以混合固体化学物质的机器)进行研究。当钢球撞击塑料时,机械力会打破化学键,形成自由基,自由基具有高活性的非键电子。这些自由基促进了自我维持的链式反应,从而促进了有机卤化物的脱卤反应,即用氢原子取代卤原子。"使用商品塑料作为化学试剂是有机合成的一个全新视角,"Koji Kubota 副教授说。"我相信,这种方法不仅能开发出安全、高效的基于自由基的反应,还能为利用废塑料这一严重的社会问题提供新的途径"。北海道大学化学反应设计与发现研究所(WPI-ICReDD)研究团队的 Koji Kubota 副教授(左)和 Hajime Ito 教授(右)。资料来源:WPI-ICReDD在球磨罐中加入普通杂货袋的塑料碎片并成功进行反应,证明了废塑料的再利用。研究小组还展示了他们的方法可用于处理工业中广泛使用的剧毒多卤化合物。他们利用聚乙烯引发自由基反应,从一种常用于阻燃剂的化合物中去除多个卤原子,从而降低了其毒性。研究人员预计,由于这种方法在成本和安全性方面的优势,它将赢得业界的关注。Hajime Ito 教授评论说:"我们的新方法使用稳定、廉价和丰富的塑料材料作为自由基链式反应的引发剂,在促进开发具有工业吸引力、安全和高效的化学工艺方面具有巨大潜力。"这项研究得到了日本学术振兴会、日本科学技术振兴机构和日本文部科学省的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员成功将废弃鸡脂肪转化为清洁能源

研究人员成功将废弃鸡脂肪转化为清洁能源 研究人员开发出一种将鸡脂肪转化为超级电容器碳基电极的新方法,为传统材料提供了一种环保型替代品。这一创新不仅解决了与现有存储设备相关的成本和环境问题,还提高了能源存储技术的性能和效率。全球正朝着更可持续的绿色能源方向发展,这增加了电力储备和对储能设备的需求。遗憾的是,用于这些设备的某些材料既昂贵又存在环境问题。利用通常被扔掉的东西生产替代储能设备有助于解决这些难题。现在,研究人员在《ACS 应用材料与界面》(ACS Applied Materials & Interfaces )杂志上报告了一种将鸡脂肪转化为碳基电极的方法,这种电极可用于超级电容器,储存能量并为 LED 供电。这种提取的鸡脂肪为超级电容器创造了一种碳基材料。资料来源:Mohan Reddy Pallavolu根据国际能源机构的数据,2023 年,全球可再生能源发电能力将比上一年前所未有地增长近 50%。但是,这些多余的能源必须储存起来,以便日后从其生产中获益。例如,由于屋顶太阳能电池板供应过剩,加利福尼亚州的晴天最近引发了负能源价格。由于石墨烯等碳材料具有高效的电荷传输和天然丰富的资源,最近设计高性能存储设备的努力利用了这些材料,但其制造成本高昂,而且会产生污染和温室气体。为了寻找替代碳源材料,Mohan Reddy Pallavolu、Jae Hak Jung、Sang Woo Joo 及其同事希望开发一种简单、经济有效的方法,将废弃鸡脂肪转化为导电纳米结构,用于超级电容器储能装置。研究人员首先使用燃气火焰喷枪灼烧鸡肉中的脂肪,然后使用火焰灯芯法燃烧融化的油,就像使用油灯一样。然后,他们将油烟收集到悬浮在火焰上方的烧瓶底部。电子显微镜显示,烟尘中含有碳基纳米结构,它们是由同心石墨环组成的均匀球形晶格,就像洋葱的层状结构。研究人员测试了一种通过将碳纳米粒子浸泡在硫脲溶液中来增强其电气特性的方法。在这些非对称超级电容器中,当使用源自鸡肉的碳材料作为电极时,LED 可以点亮。资料来源:Mohan Reddy Pallavolu将鸡脂肪来源的碳纳米粒子组装到非对称超级电容器的负极中,可显示出良好的电容性和耐用性,以及高能量和功率密度。正如所预测的那样,当电极由硫脲处理过的碳纳米颗粒制成时,这些特性得到了进一步改善。研究人员随后演示了新型超级电容器的实时应用充电并连接两个超级电容器,点亮红色、绿色和蓝色 LED 灯。这些成果凸显了利用鸡脂肪等食物垃圾作为碳源,寻找更环保的绿色能源的潜在优势。编译自/scitechdaily ... PC版: 手机版:

封面图片

在乳清蛋白的帮助下 从电子垃圾中提取黄金突然变得有利可图

在乳清蛋白的帮助下 从电子垃圾中提取黄金突然变得有利可图 在一项新的研究中,来自瑞士苏黎世联邦理工学院的研究人员详细介绍了一种可持续的、具有成本效益的从电子废物中选择性提取黄金的方法。该研究的通讯作者拉法埃莱-梅赞加(Raffaele Mezzenga)说:"我最喜欢的一点是,我们利用食品工业的副产品从电子垃圾中提取黄金。没有比这更可持续的了!"梅赞加所说的食品工业副产品是乳清,即制作奶酪时从凝乳中分离出来的牛奶含水部分。在这里,研究人员将这种乳制品废料转化为蛋白质淀粉样纤维基质,并将其用作吸附剂,选择性地从电子垃圾中提取金。在酸性条件和高温下,乳清蛋白被变性蛋白质的主要结构被破坏,变成更松散、更随意的结构导致它们在凝胶中聚集成纳米纤维。凝胶干燥后形成海绵。利用食品工业副产品从电子垃圾中回收黄金的工艺示意图研究人员从 20 块旧电脑主板中提取了金属部件,并将其溶解在酸浴中,使金属离子化或分离成正离子和负离子。当把蛋白质纤维海绵放入金属离子溶液中时,金离子就会粘在上面。虽然其他金属(例如铜和铁)也能被海绵吸收,但金的吸收效率要高得多。吸收金离子后,蛋白质纤维海绵受热,将离子还原成片状,最终熔化成质量约为 500 毫克的金块。分析表明,金块主要由金构成(90.8 wt%),铜和镍分别占 10.9 wt% 和 0.018 wt%。这些发现表明金块的纯度很高,相当于 21 或 22 克拉。在论文中,研究人员证明了他们的方法在商业上的可行性。包括原材料采购成本和整个过程的能源成本在内,从电子垃圾中回收 1 克黄金的总成本比回收黄金的价值低 50 倍。而且从环保角度来看,这种方法更好。使用传统活性炭从电子垃圾中回收 1 克黄金会产生约 116 克二氧化碳,而蛋白质纤维海绵的碳足迹较低,仅产生约 87 克温室气体。使用活性炭对环境影响较大的主要原因是,活性炭在生产过程中的能耗较高,这主要是由于使用了不可再生的燃料,再加上活性炭的吸附能力低于海绵。以前的提金尝试都有其缺点,例如可扩展性。由于乳清是一种动物性蛋白质,蛋白质纤维海绵可能会比活性炭对生态系统造成更大的破坏。因此,研究人员将探索是否可以用植物性蛋白质(如从豌豆和土豆中提取的蛋白质)代替乳清。研究人员计划将这项技术推向市场。虽然电子垃圾是提取黄金的一个很有前景的起始来源,但他们也在关注其他来源,包括微芯片制造或镀金过程中产生的工业废料。这项研究发表在《先进材料》杂志上。 ... PC版: 手机版:

封面图片

新型太阳能技术可将温室气体转化为燃料和有用化学品

新型太阳能技术可将温室气体转化为燃料和有用化学品 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 在太阳光的集中照射下,这种复合材料在甲烷与二氧化碳的干转化(DRM)过程中表现出卓越的性能,合成气进化率达到 180.9 mmol gcat-1 h-1,选择性达到 96.3%。与传统催化系统相比,这是一项重大改进,因为传统催化系统通常需要高能量输入,而且会迅速失活。"我们的工作代表着在应对温室气体排放和可持续能源生产双重挑战方面迈出的重要一步,"上海交通大学首席研究员周宝文教授说。"通过利用太阳能和合理设计的纳米结构,我们展示了一条将废气转化为宝贵化学资源的绿色高效路线。"研究人员探索了Rh/InGaN1-xOx纳米线在光照驱动下与二氧化碳进行甲烷干转化制合成气(CH4+CO2+ light = 2CO + 2H2)的应用。该研究提出,用 O 部分取代 InGaN 中的 N 可以大大提高催化剂在光照下的活性和稳定性,而无需额外加热。研究人员将其光催化剂的卓越性能归功于光活性 InGaN 纳米线、氧修饰表面和催化活性铑纳米颗粒的整合所产生的协同效应。机理研究表明,结合的氧原子在促进二氧化碳活化、促进一氧化碳生成和抑制催化剂因焦化沉积而失活方面起着至关重要的作用。这项研究成果发表在著名的《科学通报》杂志上,为开发先进的光催化系统,利用可再生资源可持续地生产燃料和化学品铺平了道路。研究小组相信,他们的方法可以推广到其他重要的化学反应中,为绿色化工提供新的机遇。周宝文教授说:"我们对这项技术的前景感到兴奋。"通过进一步优化催化剂设计和反应器配置,我们的目标是扩大该工艺的规模,并证明其在实际应用中的可行性。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家利用纳米技术将肉桂转化为抗菌剂

科学家利用纳米技术将肉桂转化为抗菌剂 这种"纳米杀手"在对付大肠杆菌、金黄色葡萄球菌和白色念珠菌等病原微生物方面已显示出相当大的功效。这项技术的潜在应用领域包括消除食品中的病原体、废水处理以及控制医院感染。这种纳米设备所针对的病原体可导致严重的健康问题。例如,大肠杆菌菌株通常无害,但有些会导致明显的腹痛、腹泻和呕吐。金黄色葡萄球菌可能导致皮肤和血液感染、骨髓炎或肺炎。白色念珠菌是一种存在于生物体液中的真菌,可导致念珠菌血症和侵袭性念珠菌病等疾病。UPV 团队。资料来源:UPV研究人员说,这种"纳米杀手"的应用非常简单:"例如,我们可以制造一种喷雾剂,以水和其他化合物为基础配制成制剂,然后直接喷洒。在田间制作水基配方,然后直接喷洒,就像现在的杀虫剂一样。在医院里,可以将其涂在绷带上,我们甚至可以尝试制作一种可以口服的胶囊。"大学间分子识别研究和技术开发研究所(IDM)纳米传感器小组的研究员 Andrea Bernardos 解释说。与游离化合物相比,新型纳米装置提高了封装肉桂醛的功效:对大肠杆菌的功效提高了约 52 倍,对金黄色葡萄球菌的功效提高了约 60 倍,对白色念珠菌的功效提高了约 7 倍。精油成分的抗菌活性之所以能够提高,是因为其在多孔硅胶基质中的封装降低了挥发性,而且由于微生物的存在,精油成分在释放时的局部浓度有所增加。该装置以其极低剂量的高抗菌活性脱颖而出。此外,它还增强了游离肉桂醛的抗菌特性,使用纳米装置后,细菌菌株(大肠杆菌和金黄色葡萄球菌)的杀菌剂量降低了约 98%,酵母菌株(白色念珠菌)的杀菌剂量降低了 72%。瓦伦西亚理工大学 IDM 研究员 Ángela Morellá-Aucejo 总结说:"此外,这种含有天然杀菌剂(如精油成分)的装置还可应用于生物医学、食品技术、农业等领域,其释放量受病原体存在的控制。"这项研究的结果发表在《生物材料进展》(Biomaterials Advances)杂志上。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人