研究人员在30多亿年前的生态系统中发现了复杂的微生物群落

研究人员在30多亿年前的生态系统中发现了复杂的微生物群落 微生物被认为是地球上最早的生命形式,其证据蕴藏在 35 亿年前的岩石中。这些岩石中含有这些远古生物留下的地球化学和形态标记,如特定的化合物和结构。然而,生命起源于地球的时间和地点,以及这些早期微生物群落中物种多样性的形成时间,至今仍不清楚。证据很少,而且常常存在争议。 PC版: 手机版:

相关推荐

封面图片

新型合成微生物群落在消灭杂草的同时促进作物的健康生长

新型合成微生物群落在消灭杂草的同时促进作物的健康生长 华中农业大学的研究团队开发出了实验室培养的新型合成微生物群落(也称为 SynComs),这种群落本质上就像一个微型微生物群落,可以消灭杂草目标,同时促进作物的健康和生长。其中一种 SynCom 从杂草或小麦根瘤中分离出的细菌特别显示出了帮助行业减少除草剂使用的巨大前景。在对四种 SynComs(C1、C2、C3 和 C4)进行的温室比较研究中,C4 拔得头筹,它不仅能杀死危害小麦作物的有害稗草,还能促进谷物的健康和生长。研究小组指出:"所有 SynComs 都能促进小麦生长,具体表现为土壤植物分析发育(SPAD)值和新鲜生物量的增加。与此同时,SynCom C4 与低剂量 Axial 除草剂结合使用时,可有效降低侵染杂草小金丝雀草的 SPAD 值和新鲜生物量。"在这些结果的鼓舞下,研究人员在一个连续多年遭受严重虫害的地区进行了大规模田间试验。他们试验了不同剂量的 Axial(25%、50%、75% 和 100%),发现了一个黄金区域,该区有可能显著减少用于这种主要作物的化学品。研究人员指出:"C4与50%和75% Axial的组合通过减轻除草剂对小麦的副作用,显著改善了小麦的生长。杂草侵扰使50%和75% Axial剂量的谷物产量分别减少16%和25%。与单独使用 Axial 相比,将 Axial 与 C4 结合使用可挽回杂草侵扰下 22% 的谷物产量损失。""研究结果表明,除草剂与 SynComs 的组合在控制杂草和促进小麦生长方面具有协同效应,因此这种组合提供了一种可持续的生态友好型杂草控制策略"。自商业化以来,除草剂就毁誉参半,数以百计的合成化合物被广泛应用于集约农业,提高了产量,减少了人工劳动。然而,尽管除草剂被广泛用于控制破坏作物的植物,并具有促进生长的作用,但在越战期间,美国军方使用橙剂(以及紫、蓝、粉、绿和白剂)混合除草剂来去除树木叶片、破坏植被和作物后,除草剂对人类的毒性就变得非常明显了。1971 年,美国禁用了这种除草剂(比有毒杀虫剂滴滴涕早一年)。虽然美国对除草剂的使用进行了严格监管,但其使用会产生严重的连锁反应。就像人类肠道微生物群对整体健康的重要性一样,土壤中的微生物群对其维持的生命也至关重要。除草剂会减少土壤中循环养分的有机物,使这一独特的微生物群退化,从而降低作物产量。这反过来又会增加用于促进生长的化学品。不过,SynComs 也有自己的挑战,例如在释放到自然环境中时,会面临土壤中的竞争物种。随着时间的推移,合成微生物也可能因进化和横向基因转移而发生变化。(除草剂的使用也导致植物发展出抵抗反复化学攻击的机制)。在这项研究中,科学家们发现 C4 能显著促进小麦的生长,即使在没有 Axial 的情况下也是如此。在包括一种基于糖的新型除草剂、另一种来自"失败"抗生素的除草剂、甚至基于植物的泡沫等研究领域,这是一个充满希望的进展。研究人员指出:"在田间条件下,即使与低剂量除草剂一起使用,C4 也能表现出理想的双重功能,既能控制小麦蚜虫,又能促进小麦生长。因此,将 SynComs 与低剂量除草剂结合使用有望成为一种可持续的环保除草策略。"这项研究发表在《土壤生态学通讯》杂志上。 ... PC版: 手机版:

封面图片

开创性的方法揭示了地球表面深处微生物群落的关键信息

开创性的方法揭示了地球表面深处微生物群落的关键信息 由比奇洛海洋科学实验室研究人员领导的科学家团队开发出一种创新方法,将生活在地球表面深处无氧环境中的单个微生物的遗传学和功能联系起来。测量这两个属性更重要的是将它们联系起来长期以来一直是微生物学的一项挑战,但对于了解微生物群落在碳循环等全球过程中的作用至关重要。比奇洛实验室单细胞基因组学中心开发的新方法使研究人员发现,在死亡谷地下近半英里处的地下含水层中,一种消耗硫酸盐的细菌不仅数量最多,而且是最活跃的生物。研究结果发表在《美国国家科学院院刊》上,表明这种方法可以成为测量不同生物在这些极端环境中活跃程度的有力工具。洞察微生物群落动力学"以前,我们不得不假定所有细胞都以相同的速率运行,但现在我们可以看到,微生物群落个体成员之间的活动水平存在很大差异,"研究科学家兼论文第一作者梅洛迪-林赛说。"这有助于我们了解这些微生物群落的能力,以及它们可能对全球生物地球化学循环产生的影响"。沙漠研究所团队从死亡谷的钻孔中提取样本。图片来源:杜安-莫泽,沙漠研究所最近的研究是一个更大项目的一部分,该项目将微生物的遗传密码它们能做什么的蓝图与它们在任何特定时刻实际在做什么联系起来。方法论方面的进展由美国国家科学基金会 EPSCoR 计划资助的"基因组到表型组"项目是毕格罗实验室、沙漠研究所和新罕布什尔大学之间的一项合作项目。该项目利用单细胞基因测序的最新进展,创造性地采用流式细胞仪估算细胞内呼吸等过程的速率。流式细胞仪是一种分析单个环境微生物的方法,比奇洛实验室将其从生物医学科学中改造出来,使研究人员能够快速分拣出含水层水样中的活微生物。这些微生物被一种特殊设计的化合物染色,当细胞内发生某些化学反应时,这种化合物就会在流式细胞仪的激光下发光。比奇洛实验室的实习学生通过实验得出了细胞在激光下发出荧光的程度与这些反应速度之间的关系,然后将其应用到死亡谷的样本中。测量并分离出活性细胞后,研究小组对它们各自的基因组进行了测序。研究人员还使用了元转录组学(一种确定哪些基因正在活跃表达的方法)和放射性同位素示踪剂(一种测量微生物群落活动的更传统的方法)。这样做既是为了"双重检查"他们的结果,也是为了获得更多关于这些微生物的基因能力与它们实际活动之间联系的信息。单细胞基因组学中心是世界上唯一一家为研究人员提供这种新技术的分析机构。"这项研究对我们的研究团队和南加州地质调查局来说是一个令人兴奋的机会,可以帮助我们更好地了解地下巨大而神秘的微生物生态系统,"比奇洛实验室高级研究科学家、南加州地质调查局局长兼该项目的首席研究员拉穆纳斯-斯泰潘纳斯卡斯(Ramunas Stepanauskas)说。这项新研究首次展示了这种量化单个细胞活性的方法。2022 年底,研究小组发表了关于海水中微生物的研究结果,显示一小部分微生物消耗了海洋中的大部分氧气。在这篇新论文中,研究小组扩展了这一方法,表明它可用于低生物量环境中不依赖氧气的微生物。例如,在从加利福尼亚州地下含水层提取的样本中,科学家们估计每毫升水中有数百个细胞,而一般地表水每毫升中有数百万个细胞。"我们一开始研究海洋中的有氧呼吸生物,因为它们更活跃,更容易分类,也更容易在实验室中生长,"林赛说。"但有氧呼吸只是微生物学中可能存在的一个过程,所以我们想在此基础上进一步拓展"。扩大微生物研究范围研究结果证实,Candidatus Desulforudis audaxviator 细菌(绰号"勇敢的旅行者")不仅是这一环境中数量最多的微生物,也是最活跃的微生物,它能将硫酸盐还原为能量。与之前研究中的海水样本相比,研究小组测得的总体活性率较低,但单个微生物的活性差异很大。研究小组目前正努力将他们的方法应用于测量其他厌氧反应,如硝酸盐还原,并应用于新的环境,包括缅因州沿海的沉积物。由美国国家航空航天局(NASA)资助的一个相关项目也使林赛和她的同事们能够在海洋深处的地下测试这种方法。"现在,我们正在世界各地进行这些点测量,它们确实有助于我们更好地了解微生物的活动情况,但我们需要扩大其规模。因此,我们正在考虑如何将这种方法应用到新的地方,甚至有可能应用到其他星球上,并扩大应用范围。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

珊瑚白化:表层下微生物混乱的催化剂

珊瑚白化:表层下微生物混乱的催化剂 2019 年白化事件期间,研究人员在法属波利尼西亚莫奥里亚的珊瑚礁上潜水。图片来源:Milou Arts of NIOZ由夏威夷大学马诺阿分校(UH)和荷兰皇家海洋研究所(NIOZ)领导的新研究发现,当珊瑚白化发生时,珊瑚会向周围的水中释放独特的有机化合物,这不仅会促进细菌的整体生长,而且会选择可能会进一步对珊瑚礁造成压力的机会性细菌。"我们的研究结果表明,短期热应力和长期白化的影响可能会超出珊瑚的范围,延伸到水体中,"共同第一作者、马诺阿大学热带农业与人力资源学院博士后研究员、马诺阿大学海洋与地球科学技术学院(SOEST)前博士生韦斯利-斯帕拉贡(Wesley Sparagon)说。研究小组成员包括来自马诺阿大学、国家海洋研究所、斯克里普斯海洋学研究所和加州大学圣巴巴拉分校的科学家,他们对2019年法属波利尼西亚穆雷阿岛白化事件期间收集的白化和未白化珊瑚进行了实验。这项研究的资深作者、SOEST 教授克雷格-尼尔森(Craig Nelson)说:"尽管珊瑚白化是一个有据可查的现象,而且在全球珊瑚礁中越来越普遍,但有关珊瑚礁水柱微生物学和生物地球化学影响的研究却相对较少。"作者 Irina Koester 博士(左)和 Jessica Bullington 博士(右)以及共同第一作者 Wesley Sparagon 博士(中)在莫奥里亚的甘普站使用蠕动泵对微生物群落进行采样。图片来源:克雷格-尼尔森,马诺阿大学/ SOEST实验结果和微生物反应在加热实验中,研究小组确定,与未漂白的珊瑚相比,受热胁迫的珊瑚和漂白的珊瑚在应对热胁迫时会散发出不同成分的有机物。这些独特的化合物为周围水域中的微生物群落提供了营养,使其数量增加。斯帕拉贡说:"有趣的是,对白化珊瑚渗出物做出反应的微生物与在健康珊瑚渗出物上生长的微生物截然不同。而且,快速生长的机会主义者和潜在病原体的丰度更高。这些微生物群落在受压珊瑚周围的生长可能会通过窒息或引入疾病对珊瑚造成伤害。"作者 Zach Quinlan 博士(左)和共同第一作者 Milou Arts(右)使用蠕动泵收集溶解有机碳样本。资料来源:Wesley Sparagon,马诺阿大学最令人惊讶的是,珊瑚释放化合物的这种变化发生在研究中经历过任何压力的珊瑚身上:已受热但尚未漂白的珊瑚、既受热又漂白的珊瑚以及之前在野外漂白过的珊瑚。NIOZ的共同第一作者米卢-阿茨(Milou Arts)说:"这表明,这一过程发生在珊瑚白化的整个过程中,从热应力开始一直到恢复。重要的是,它在热应力下的健康珊瑚中最为明显,这表明它在热应力开始时影响最大,可能会将珊瑚推向更严重的白化,最终导致死亡。"研究人员正在积极研究如何识别水体中的化合物和微生物,它们可以作为珊瑚礁受到压力时的预警系统。这可以加强或补充其他珊瑚礁保护工作,特别是在发生灾难性破坏之前识别珊瑚礁压力方面。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

智利阿塔卡马沙漠下发现1.9万年微生物生态圈 甚至还与火星有关

智利阿塔卡马沙漠下发现1.9万年微生物生态圈 甚至还与火星有关 智利北部的阿塔卡马沙漠是世界上最干旱的非极地沙漠,这里的动植物种类极少。由于通常十年才降一次雨,这片沙漠非常干燥,以至于美国国家航空航天局(NASA)将其作为火星地貌的替身。但是,在这干涸的地表下生活着什么呢?新的研究表明,它非常小,数量非常多,而且非常古老。虽然阿塔卡马沙漠的干旱意味着高等生物稀少,但众所周知,多种多样的细菌在这里的土壤中占主导地位。不过,研究人员的目标是深入研究,看看地表下一米多(3.3 英尺)的地方生活着哪些种类的微生物。阿塔卡马沙漠最干燥的地方之一永盖山谷(Yungay Valley)一个龟裂的洼地 卢卡斯-霍斯特曼/德国波茨坦联邦理工学院他们选择的地点位于云盖山谷的一个普拉亚(playa)地区,这是沙漠超干旱核心地区最干旱的地方之一。普拉亚是曾经包含地表水体的洼地或盆地;它们本质上是干涸的湖床。在其他地方,矿物石膏和无水石膏通常靠近地表,在上部 50 厘米/20 英寸的范围内,而在普雷亚地区,它们被埋在大约 2 米/6.6 英尺的深处。相反,无水石膏遇水后会转化为石膏。当他们挖掘到地下 4.2 米/13.8 英尺深处时,研究人员发现了石膏、无水石膏和海绿石(俗称岩盐)等盐类堆积物,以及阳离子(钠、钙)和阴离子(硫酸盐、硝酸盐、氯化物)。根据地下深度绘制的矿物、阳离子和阴离子丰度图 Horstmann 等人研究人员说:"深度为 184 厘米(72.4 英寸)的剖面上半部分主要由淤泥沉积物组成,间或有薄沙层。在 184 厘米至 230 厘米(90.6 英寸)深度之间,沉积物过渡到较粗的质地,包括沙子和卵石。在 230 厘米以下,剖面始终包含[原文如此]卵石至鹅卵石大小的颗粒"。他们使用无脊椎动物衍生 DNA(iDNA)分析,并将其与地球化学分析(X 射线衍射和离子色谱法)进行比较,以研究地下的微生物学。基因测序揭示了不同地层中丰富多样的微生物群落。大部分序列被归类为细菌;0.5%为古细菌,古细菌是一种结构与细菌相似但在进化过程中截然不同的单细胞微生物。古细菌被认为是介于细菌和真核生物或含有 DNA 的细胞含有独特细胞核的生物之间的一个古老群体。三个细菌群(门)占主导地位,占遗传序列的 90% 以上:放线菌属(Actinobacteria)、固形菌属(Firmicutes)和变形菌属(Proteobacteria)。不同地下深度的微生物组成在深度为 2 至 5 厘米(0.8 至 2 英寸)的最上层沉积物中,放线菌占微生物总数的 95%。固着菌的比例很高,从 40 厘米/15.7 英寸深度的 47% 到 30 厘米/11.8 英寸深度的 93%。只有在 70 厘米/27.6 英寸处,才出现了较低的固着菌相对丰度(34%),在 200 厘米/78.7 英寸以下则明显下降。在 200 厘米以下的沉积物中,微生物群落仍然以放线菌为主,深度达 4.2 米。从生态学角度看,洼地沉积相对较新;沉积开始于大约 1.9 万年前。然而,冲积层沉积的年代要久远得多,4.2 米的深度可以追溯到 380 万年前。研究人员认为,他们发现的放线菌群落可能在"早期"就已经在土壤中定植,然后被埋藏在冲积层下。这可能意味着,此前未知的深层生物圈将在极度干旱的沙漠土壤中无限向下延伸。链霉菌是最大的放线菌属 疾病预防控制中心/戴维-贝尔德博士该研究最引人注目的发现之一是,微生物出现在 200 厘米以下的沉积物中,在这些沉积物中,洼地过渡到由河道或冲积平原上沉积的砾石、沙、粉砂或粘土组成的冲积层。原以为这些深度的微生物多样性和丰度会较低,但事实并非如此。在阿塔卡马沙漠,石膏已经被证明可以支持微生物群落。研究人员认为,在这里,较深的石膏沉积物通过提供水分或增加沙漠高干旱土壤的保水性,在微生物多样性方面发挥了至关重要的作用。研究人员说:"尽管石膏在所有沙漠的次表层可能并不普遍,但这种次表层生态位的存在可能表明,全球沙漠的多样性迄今被低估了,在特定情况下,次表层群落可以在地球上最干旱地方的最深层持续存在。这项研究对寻找地球以外的嗜极端生物具有重要意义"。文章开头提到,美国国家航空航天局把阿塔卡马沙漠作为火星的代表。那么,火星也有石膏矿床。那么,火星上的石膏会不会也是火星上微生物生命的水源呢?该研究发表在《PNAS Nexus》杂志上。 ... PC版: 手机版:

封面图片

科学家在智利阿塔卡马沙漠发现前所未见的微生物地下栖息地

科学家在智利阿塔卡马沙漠发现前所未见的微生物地下栖息地 科学家利用新的 DNA 分析技术在智利阿塔卡马沙漠深处发现了多种微生物生命,为极端环境中的生物多样性提供了见解,并对地外生命研究产生了潜在影响。永盖-普拉亚,智利阿塔卡马沙漠最干旱的地区之一。资料来源:D. Wagner, GFZ这是以新开发的分子 DNA 分析方法为基础的,这种方法可以集中提取和分析细胞内 DNA。这些DNA来自活生物体或休眠生物体的完整细胞,因此可以检测到栖息在深达4.20米的极干旱土壤中的有生命力和潜在活性的微生物群落。这项发表在《美国国家科学院院刊》(PNAS Nexus)上的研究,扩大了我们对干旱、盐碱和营养缺乏等极端条件下接近生命极限的地区生物多样性的了解。研究结果还对寻找其他星球上的生命有一定意义。沙漠是地球上最大、最脆弱的生态系统之一。虽然那里的条件最恶劣、最危及生命,但却孕育着微生物生命。在没有定期降雨的情况下,微生物利用矿物质和盐分等土壤成分以及大气中的气体作为能量和水分来源,成为调解养分流动的最重要生态成分。"微生物多样性和分布的研究对于充分了解微生物过程在维持沙漠生态系统生态平衡和功能性方面的核心作用至关重要,尤其是在气候变化背景下沙漠生态系统的未来发展方面。"永盖-普拉亚研究遗址:挖掘出的剖面坑和安托法加斯塔大学的实验室手推车。图片来源:L. Horstmann, GFZ智利北部 105000 平方公里的阿塔卡马沙漠被认为是世界上最干旱的炎热沙漠。因此,这里非常适合研究这种栖息地。研究人员已经对水深约一米的浅水区进行了调查。在这里,他们了解到这是一个可以抵御紫外线辐射的利基栖息地,而且这里仍有水源,微生物可以在此繁衍生息。另一方面,迄今为止只有少数研究对沙漠土壤的深层进行了分析。因此,GFZ 地球微生物学组的博士生卢卡斯-霍斯曼(Lucas Horstmann)和博士后研究员丹尼尔-利普斯(Daniel Lipus),以及该组负责人、波茨坦大学地球微生物学和地球生物学教授德克-瓦格纳(Dirk Wagner)领导的研究小组重点研究这些土壤。其他同事来自柏林工业大学和智利安托法加斯塔大学。研究人员希望测试极度干旱的阿塔卡马沙漠深层沉积物是否也能成为特殊微生物的栖息地。研究小组在安托法加斯塔东南约 60 公里处的永盖地区对土壤剖面进行了研究,分析了沿深度剖面的微生物多样性及其与土壤特性的相互作用,该深度剖面既包括台地沉积物,也包括下面的冲积扇沉积物,最深处达 4.2 米。为此,他们挖掘了一个土壤剖面,每隔 10 厘米采集一个土壤样本,深度达 3 米,然后每隔 30 厘米采集一个样本,这些样本被送往德国联邦科学研究中心的实验室进行分析。为了检测样本中的生命痕迹,科学家们使用了德克-瓦格纳(Dirk Wagner)等人在德国科学研究基金会(GFZ)开发的分子 DNA 分析新技术:使用一种特殊的提取方法,可以从样本中只过滤出细胞内 DNA,即来自完整和潜在活性细胞的 DNA。为此需要使用各种化学试剂、离心机和过滤器。瓦格纳强调说:"这种方法对极端环境中微生物多样性的研究是一个重大改进,因为它有效地排除了死细胞 DNA 产生的偏差,即使由于生物量较低而达到其他方法的检测极限时,仍能提供有效数据。"通过对样本进行细胞内 DNA 提取和随后的基因测序,研究人员能够鉴定出深度达 4.2 米的潜在微生物。在上层 80 厘米处,他们主要发现了属于固着菌门的微生物,但它们的数量随着深度的增加而减少,可溶性盐的含量也随之增加。研究人员猜测,高浓度盐分和日益缺水也可能是导致微生物在沙丘沉积物下部停止定殖的原因。在这方面,他们的研究结果与之前的研究结果是一致的。然而,霍斯特曼和瓦格纳的研究小组再次在两米以下的冲积扇沉积层中发现了一个微生物群落。该群落比地表群落更加多样化,很可能与地表完全隔离。它主要由属于放线菌门的细菌组成,放线菌门是一个具有特殊成员的群体,通常存在于干燥或原始的土壤中。古剖面上部。资料来源:D. Wagner, GFZ这些微生物的存在可能与水泡石膏的存在有关,水泡石膏可溶解成无水石膏,从而提供另一种水源。本研究中观察到的生物属于可利用氢气等痕量气体作为能量来源,利用二氧化碳作为碳源进行生长的物种。第一作者卢卡斯-霍尔曼(Lucas Hormann)说:"这种类型的新陈代谢被称为化学溶解自养,其他研究表明,它对有机物作为碳源极其有限的极干旱土壤非常重要。因此,对于本研究中调查的孤立的地下壁龛来说,它也可能是必不可少的。"总结与展望:令人惊叹的沙漠生物多样性及其对地外生命的影响霍斯特曼总结道:"这个地下群落在两米深以下的冲积扇沉积物中茁壮成长,显示出惊人的多样性和生态稳定性,它的发现挑战了我们目前对沙漠生态系统的认识。"作者认为,该群落可能早在 1.9 万年前就已在土壤中定植,当时土壤还未被洼地沉积物掩埋,他们还假设该群落可能会继续向下延伸一段未知的距离,这代表了超干旱沙漠土壤中以前未知的深层生物圈。合著者德克-瓦格纳(Dirk Wagner)说:"鉴于旱地在地球上的广泛分布,在以前未开发的地下土壤中存在潜在的碳结合群落,不仅对沙漠中的生物多样性,而且对全球范围的元素循环都有深远影响。这表明这些生境的重要性至今仍被低估。这也强调了地表下栖息地对于未来全面了解沙漠生态系统的重要性"。研究人员强调,这项研究的结果不仅对我们的地球有影响,而且也与正在进行的关于在其他行星上寻找生命的讨论有关:"火星上存在类似于冲积扇沉积物中的石膏沉积物,这对天体生物学具有重大意义。这些地表下群落与阿塔卡马的石膏基质的联系可能会提供进一步的证据,证明火星上的石膏沉积不仅表明过去可能存在液态水,而且还可能成为目前微生物生命的宜居环境。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

冰川萎缩引发“绿色转型”:微生物正在蓬勃发展

冰川萎缩引发“绿色转型”:微生物正在蓬勃发展 来自洛桑联邦理工学院(EPFL)和查尔斯大学(Charles University)的科学家们根据"消失的冰川"(Vanishing Glaciers)项目的全球样本发现,随着冰川的缩小,山区溪流中的微生物生命也在蓬勃发展。这种"绿色过渡"导致初级生产增加,改变了当地的碳和营养循环。图片来源:EPFL/Vincent de Stark冰川注入的溪流在夏季是浑浊汹涌的洪流。大量的冰川融水搅动着岩石和沉积物,几乎没有光线可以照射到河床,而其他季节的低温和积雪则几乎没有机会让丰富的微生物群生长。但是,随着冰川在全球变暖的影响下逐渐缩小,冰川的水量也在不断减少。这意味着溪流变得更加温暖、平静和清澈,使藻类和其他微生物有机会大量繁殖,并为当地的碳和营养循环做出更大贡献。洛桑联邦理工学院河流生态系统实验室(RIVER)的全职教授汤姆-巴廷(Tom Battin)说:"我们正在目睹这些生态系统中微生物组发生深刻变化的过程由于初级生产的增加,这简直就是一场'绿色转型'。"在论文中,科学家们研究了溪水中的氮和磷等营养物质,以及生活在河床沉积物中的微生物为利用这些营养物质而产生的酶。然后,他们观察了由大小不一的冰川提供水源的巨大梯度溪流中这两种营养物质的变化。"冰川哺育的溪流生态系统通常拥有有限的碳和营养物质,尤其是磷,"前 RIVER 博士后、本文第一作者泰勒-科勒(Tyler Kohler)解释说。"随着冰川的萎缩,藻类和其他微生物对磷的需求增加,高山溪流中磷的限制可能会越来越多"。因此,磷作为生命的重要组成部分,在下游生态系统(包括较大的河流和湖泊)中将变得更加稀缺,对其食物网的影响尚不可知。2023 年 8 月,"消失的冰川"项目的科学家在《皇家学会开放科学》上发表了一篇论文,支持上述发现。在这项研究中,作者分析了乌干达鲁文佐里山脉一条由冰川提供水源的小溪的微生物群。在这里,营养物质和酶的组成也大不相同,藻类非常丰富。巴廷说:"鲁文佐里冰川发生的变化让我们看到了瑞士冰川注入的溪流在30年或50年后的样子。这种变化的一个结果是,随着冰川注入的溪流接纳更多的微生物生命,它们将在二氧化碳通量等生物地球化学循环中发挥更大的作用。"RIVER 团队计划在此基础上继续开展研究。他们正在对冰川溪流中的微生物生物多样性进行普查,并利用各种基因组信息,探索多样化的微生物是如何在地球上最极端的淡水生态系统中生存的。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人