爆火Sora震惊威尔·史密斯 OpenAI技术路线或早在1月被成功预言
爆火Sora震惊威尔·史密斯 OpenAI技术路线或早在1月被成功预言 你以为,上面是一年前的AI视频,下面是如今的AI视频?错!这个所谓AI生成的视频,其实正是威尔史密斯本人!威尔·史密斯吃意面这个“图灵测试”,曾让Runway、Pika等屡屡翻车。Runway生成的,是这样的但如今,Sora已经做到了逼真似真人、毫无破绽,所以才让威尔史密斯成功骗过了大众,这太可怕了!Sora的出现,其实在今年1月就已被人预言1月5日,一位前阿里的AI专家表示我认为,Transformer框架和LLM路线,将是AI视频的一个突破口和新范式,它将使AI视频更加连贯、一致,并且时长更长。目前的Diffusion+Unet路线(如Runway、Pika等),只是暂时的解决方案。无独有偶,斯坦福学者李飞飞在去年年底,就用Transformer就做出了逼真的视频。而马毅教授也表示,自己团队去年在NeurIPS一篇论文中也已经证实,用Transformer可以实现diffusion和denosing。马毅团队提出:假设数据分布是mixed Gaussians,那Transformer blocks就是在实现diffusion/扩散和denoising/压缩能想到Sora技术路线的,肯定不止一个人。可是全世界第一个把Sora做出来的,就是OpenAI。OpenAI为何总能成功?无他,唯手快尔。Runway和Pika“点歪”的科技树,被OpenAI掰正了在此之前,Runway、Pika等AI视频工具吸引了不少聚光灯。而OpenAI的Sora,不仅效果更加真实,就是把Transformer对前后文的理解和强大的一致性,发挥得淋漓尽致。这个全新的科技树,可真是够震撼的。不过我们在开头也可以看到,OpenAI并不是第一个想到这个的人。Transformer框架+LLM路线这种新范式,其实早已有人想到了。就如同AI大V“阑夕”所言,OpenAI用最简单的话,把最复杂的技术讲清楚了“图片只是单帧的视频。”科技行业这种从容的公共表达,真是前所未见,令人醍醐灌顶。“阑夕”指出,“图片只是单帧的视频”的妙处就在于,图片的创建不会脱离时间轴而存在,Sora实际上是提前给视频写了脚本的。甚至无论用户怎样Prompt,Sora AI都有自己的构图思维。而这,就是困住Runway、Pika等公司最大的问题。它们的思路,基本都是基于一张图片来让AI去想象,完成延伸和填补,从而叠加成视频。比拼的是谁家的AI更能理解用户想要的内容。因此,这些AI视频极易发生变形,如何保持一致性成了登天般的难题。Diffusion Model这一局,是彻底输给Transformer了。ChatGPT故事再次重演,Sora其实站在Google的肩膀上让我们深入扒一扒,Sora是站在哪些前人的肩膀上。简而言之,最大创新Patch的论文,是Google发表的。Diffusion Transformer的论文,来自William Peebles和谢赛宁。此外,Meta等机构、UC伯克利等名校皆有贡献。William Peebles和谢赛宁提出的框架纽约大学计算机系助理教授谢赛宁在分析了Sora的技术报告后表示,Sora应该是基于自己和William Peebles提出的框架设计而成。这篇提出了Sora基础架构的论文,去年被ICCV收录。论文地址: Peebles加入了OpenAI,领导了开发Sora的技术团队。图灵三巨头之一、Meta AI主管LeCun,也转发了谢赛宁的帖子表示认可。巧合的是,谢赛宁是LeCun的前FAIR同事、现纽约大学同事,William Peebles是LeCun的前伯克利学生、现任OpenAI工程师。AI果然是个圈。最近,谢赛宁对说自己是Sora作者的说法进行了辟谣CVPR“有眼不识泰山”,拒掉Sora基础论文有趣的是,Diffusion Transformer这篇论文曾因“缺乏创新性”被CVPR 2023拒收,后来才被ICCV2003接收。谢赛宁表示,他们在DIT项目没有创造太多的新东西,但是两个方面的问题:简单性和可扩展性。这可能就是Sora为什么要基于DIT构建的主要原因。此前,生成模型的方法包括GAN、自回归、扩散模型。它们都有各自的优势和局限性。而Sora引入的,是一种全新的范式转变新的建模技术和灵活性,可以处理各种时间、纵横比和分辨率。Sora所做的,是把Diffusion和Transformer架构结合在一起,创建了diffusion transformer模型。这也即是OpenAI的创新之处。时空Patch是Google的创新时空Patch,是Sora创新的核心。它建立在Google DeepMind早期对NaViT和ViT(视觉Transformer)的研究之上。论文地址:“An Image is Worth 16x16 Words”。论文地址:“Attention Is All You Need”的历史重演。2017年6月12日,8位Google研究人员发表了Attention is All You Need,大名鼎鼎的Transformer横空出世。它的出现,让NLP变了天,成为自然语言领域的主流模型。论文地址:... PC版: 手机版:
在Telegram中查看相关推荐

🔍 发送关键词来寻找群组、频道或视频。
启动SOSO机器人