康宁新研究发现玻璃中原子环结构会影响材质的性能和转变温度

康宁新研究发现玻璃中原子环结构会影响材质的性能和转变温度 玻璃越来越多地应用于各种高性能领域,包括消费和工业应用、军事和航空电子产品以及镀膜和光学产品。鉴于手机和喷气式飞机等产品对精度的严格要求,玻璃基板在整个制造过程中保持形状不变至关重要。康宁公司(Corning Incorporated)是创新玻璃、陶瓷及相关材料的制造商,该公司投入大量资源研究不同类型玻璃的稳定性。最近,康宁公司的研究人员发现,了解玻璃材料中原子环的稳定性可以帮助他们预测玻璃产品的性能。这种能力非常重要,因为使用最广泛的玻璃是硅酸盐玻璃,它由不同尺寸的原子环以三维方式连接而成。中子散射实验在能源部橡树岭国家实验室进行的中子散射实验中,ORNL 和康宁公司的科学家们发现,随着玻璃中较小的、不太稳定的原子环数量的增加,玻璃的不稳定性或液态脆性也会增加。发表在《自然-通讯》(Nature Communications)上的中子实验结果揭示了硅酸盐玻璃的中程原子环结构与其液态脆性之间的明显相关性。当玻璃液冷却到玻璃转变温度时,其粘度会发生很大变化。在一定的温度变化下,脆性较大的液体的粘度变化会更大。橡树岭国家实验室和康宁公司的科学家发现,随着玻璃中较小的、不太稳定的原子环数量的增加,玻璃的不稳定性或液态易碎性也会增加。该研究论文的通讯作者、康宁公司助理研究员 Ying Shi 说:"以前,科学家们一直不知道玻璃转变的驱动机制。人们并不清楚为什么某些类型的玻璃凝固得更快或更慢。"Shi 和她来自康宁公司、加州大学洛杉矶分校和牛津大学的合作者与 ORNL Spallation Neutron Source 的 NOMAD 中子衍射仪光束线科学家合作,对工业常用的硅酸铝玻璃进行了研究。利用最近开发和验证的中子散射数据分析工具 RingFSDP,研究小组从收集到的数据中找出了关键模式,揭示了玻璃中的液体脆性与其原子环稳定性之间的关系。RingFSDP 是由康宁公司和 ORNL 科学家共同开发的免费开源程序,用于研究硅酸盐玻璃的原子环结构。它根据中子衍射数据中第一个尖锐衍射峰的形状推导出硅酸盐玻璃中的环尺寸分布。"将玻璃转变温度范围与玻璃的基本结构特征联系起来,将对玻璃的设计和生产产生重大影响,"论文共同作者、康宁公司研究员道格拉斯-艾伦(Douglas Allan)说。"我们的工作表明,玻璃的原子环结构与其玻璃转变温度范围之间存在明显的相关性,因此玻璃的性能特征也与之相关。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

苹果正在研究制造全玻璃材质MacBook Pro的技术

苹果正在研究制造全玻璃材质MacBook Pro的技术 另外,不必只看这一项专利申请。此前曾有传言称,苹果将在 2025 年的某个时候推出触摸屏 MacBook Pro。然而,这项名称异常无聊的"电子设备"专利申请的真正重点是 MacBook Pro 的玻璃盖子。苹果公司一直在研究是否或何时将 MacBook Pro 的显示屏部分改为在背面使用玻璃,也就是苹果标志所在的位置。"由于笔记本电脑通常是便携式设备,因此尺寸、重量和耐用性等因素会影响设备的整体实用性,"苹果在文档中说。"此外,笔记本电脑使用的特殊材料,尤其是外壳组件,也会影响电脑的尺寸、重量和耐用性。例如,塑料等外壳材料可能很轻,但耐用性可能相对较低。"因此,苹果建议 MacBook Pro 的盖子包含"一个金属外壳组件,用于定义外围侧表面......以及用于显示屏部分正面和背面的玻璃板"。专利申请的很大一部分涉及屏风不同部件的组装和粘合。虽然该专利的大部分内容都是关于整个玻璃面板,但苹果在某些地方也提到只有部分背面是玻璃。这项专利不仅仅是苹果公司想推出一款显示屏,或者是想让我们回到 2015 年之前苹果标志会亮起的时代。"[相反,这种]配置产生的显示屏部分轻薄,同时保持了很高的硬度,"苹果公司继续说道。"此外,由于显示屏部分的背面是由玻璃制成的,因此背面可以更好地抵御划痕、开裂、翘曲以及其他材料可能容易受到的其他损坏。"苹果公司经常被宣称正在努力将 Mac 与iPad合并,但该公司一直拒绝承认。不过,泄密者所说的合并通常是指在这些设备上使用相同的软件操作系统。在这种情况下,苹果实际上是将iPhone的硬件元素引入Mac。这也不是苹果公司第一次提出这样的想法,因为苹果公司曾一度研究用一整块玻璃制造iMac。这项专利申请由四位发明人共同完成。其中包括劳伦-法雷尔(Lauren M. Farrell),他曾多次获得有关显示器的专利和申请。 ... PC版: 手机版:

封面图片

研究人员成功冷却了正电子原子 对反物质研究产生了重大影响

研究人员成功冷却了正电子原子 对反物质研究产生了重大影响 正电子冷却。欧洲核子研究中心的 AEgIS 合作小组在实验中演示了使用基于变石的激光系统对正电子进行激光冷却。资料来源:欧洲核子研究中心-米兰理工大学研究人员成功冷却了正电子原子,对反物质研究产生了重大影响,并促成了量子电动力学的新实验和反物质玻色-爱因斯坦凝聚物的可能性。被正电子束击中的多孔靶(室温)中流出的 Ps 原子的等效温度从 380 K 降至 170 K,相应地,Ps 均方根速度的横向分量也从 54 km/s 降至 37 km/s。正电子的独特性质Ps 是氢的小兄弟,正电子取代了质子。因此,它比氢轻约 2000 倍,能级降低了 2 倍。它很不稳定:在真空和基态下,两个粒子的自旋平行,它的湮灭寿命只有 142 毫微秒。在其短暂的生命周期内,必须进行 Ps 冷却,这使得这一过程相对于普通原子而言极具挑战性。使用大带宽脉冲激光器的好处是可以冷却大部分正电子云,同时延长它们的有效寿命,从而在冷却后获得更多的 Ps 供进一步实验使用。对反物质研究的影响AEgIS 实验的目的是测量反氢气的重力加速度(作为反物质弱等价原理的测试),在该实验中,最后一个加速度是通过处于激发态的 Ps 与被困反质子之间的反应获得的。Ps的速度越低,形成反氢的概率就越高,因此必须尽可能产生动能最低的Ps。推进基础科学和潜在应用获得足够"冷"的 Ps 原子对基础科学至关重要,例如,对 Ps 激发能级进行精密光谱分析,可以前所未有的精度测试量子电动力学,或用纯轻子系统测试等效原理。此外,建立一个冷铂原子集合体的可能性可以为第一个反物质玻色-爱因斯坦凝聚态(BEC,已通过激光冷却普通原子获得)铺平道路,在这种状态下,量子力学现象会宏观地显现出来。正电子玻色-爱因斯坦凝聚态将导致受激湮灭,这已被提议作为产生伽马射线能量范围内的相干电磁辐射的一种方法。该成果已作为编辑亮点发表在《物理评论快报》上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

SOFIA上的FORCAST仪器首次在小行星表面发现水分子

SOFIA上的FORCAST仪器首次在小行星表面发现水分子 利用 SOFIA 数据,研究人员确定了小行星表面的水分子,这标志着在了解水的分布及其在太阳系形成中的作用和支持生命的潜力方面迈出了重要一步。未来利用詹姆斯-韦伯太空望远镜进行的研究旨在通过检测更多的天体来扩展这方面的知识。资料来源:美国国家航空航天局/卡拉-托马斯/西南研究所科学家们利用FORCAST仪器观察了四颗富含硅酸盐的小行星,分离出其中两颗小行星上指示分子水的中红外光谱特征。"小行星是行星形成过程中的遗留物,因此它们的成分因其在太阳星云中形成的位置不同而各异,"《行星科学杂志》上一篇关于这一发现的论文的第一作者、瑞典航天研究所的阿尼西亚-阿雷东多博士说。"尤其令人感兴趣的是小行星上水的分布,因为这可以揭示水是如何被输送到地球的"。无水或干燥的硅酸盐小行星在靠近太阳的地方形成,而冰质物质则在更远的地方凝聚。通过了解小行星的位置及其成分,我们可以知道太阳星云中的物质是如何分布的,以及自形成以来是如何演变的。水在太阳系中的分布情况将使我们了解水在其他太阳系中的分布情况,而且由于水是地球上所有生命的必需品,这将促使我们在太阳系内外寻找潜在生命的地点。Arredondo说:"我们在小行星Iris和Massalia上探测到了一种可以明确归因于分子水的特征。研究基于在月球阳光表面发现分子水的研究小组的成功经验,认为可以利用 SOFIA 在其他天体上发现这种光谱特征。"SOFIA 在月球南半球最大的环形山之一探测到了水分子。此前对月球和小行星的观测都探测到了某种形式的氢,但无法区分水和它的近亲羟基。科学家们在遍布月球表面的一立方米土壤中检测到了大约相当于一瓶12盎司的水,这些水以化学方式与矿物质结合在一起。Arredondo说:"根据光谱特征的波段强度,小行星上水的丰度与太阳照耀下的月球一致。同样,在小行星上,水也可能与矿物结合,也可能吸附在硅酸盐上,并被困或溶解在硅酸盐撞击玻璃中"。两颗较暗小行星 Parthenope 和 Melpomene 的数据过于嘈杂,无法得出明确结论。FORCAST仪器的灵敏度显然不足以探测到水的光谱特征(如果存在的话)。不过,有了这些发现,研究小组正在利用美国国家航空航天局的詹姆斯-韦伯太空望远镜首屈一指的红外太空望远镜利用其精确的光学系统和卓越的信噪比来调查更多的目标。Arredondo说:"在第二周期,我们用韦伯望远镜对另外两颗小行星进行了初步测量,并已经为下一个周期提出了另一项建议,研究另外 30 个目标。这些研究将增加我们对太阳系中水分布的了解。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现30亿年前的地幔温度升高热使地球地壳“年轻化”

研究发现30亿年前的地幔温度升高热使地球地壳“年轻化” 为了进一步了解地壳的历史,研究人员对中国西南扬子克拉通花岗岩中的锆石颗粒进行了研究(如显微镜下所示)。图片来源:Wei Wang然而,陨石坑是微小锆石颗粒的家园,其中含有多种同位素系统,如铀、铪、氧或铅,为我们提供了一种了解数十亿年前历史的方法。与熔岩或岩浆形成的火成锆石相比,在岩石风化后的沉积物中发现的碎屑锆石能更连续地记录地球的历史。但是,由于碎屑锆石缺乏关于其来源岩石的岩石成因信息,它们可能会人为地暗示古老岩石的年轻年龄和不正确的铪同位素。在一项新的研究中,科学家们重点研究了完整的火成岩锆石。以前的研究表明,在距今约30亿年前从古新纪向中新纪过渡期间,位于碎屑岩和火成岩锆石中的铪同位素比值有所增加。这种增加被认为是地壳年轻化的结果,即较新的岩浆注入较老的地壳岩石。人们普遍认为,岩浆的增加也标志着从不动的地壳和地幔过渡到更加不稳定的板块运动时期。新研究对中国西南西南扬子克拉通花岗岩岩石的火成锆石和其他地球化学性质进行了研究,对这一理论提出了挑战。研究人员认为,这一时代全球范围内发生的地壳年轻化是地幔温度升高的结果,而不是大范围构造活动的结果。通过分析火成岩锆石中的同位素收集到的数据表明,较年轻的岩浆流入现有的大陆地壳,导致地幔岩石熔化,热岩浆在地壳-地幔边界汇集。这些部分熔化的岩浆有的会冷却成花岗岩,如西南扬子克拉通的花岗岩。这一过程可能在大陆地壳的生长过程中发挥了重要作用,并为我们今天所知的地球构造的起源提供了新的可能解释。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现锌对豆科植物的固氮过程有重大影响

研究发现锌对豆科植物的固氮过程有重大影响 日本莲图片来源:Helene Eriksen发现锌在固氮中的作用科学家们发现了锌在豆科植物固氮过程中的重要作用。这一发现与对称为"硝酸盐下固氮(FUN)"的转录调节因子的深入研究相结合,有可能通过提高作物效率和减少对合成肥料的依赖来改变豆科植物的种植。通过深入研究锌和FUN控制固氮作用的机制,研究人员旨在提高氮的可用性,提高作物产量,并促进更环保的耕作方法。豆科作物与根瘤菌形成共生关系,根瘤菌将大气中的氮固定在根瘤中。然而,这些根瘤很容易受到各种环境压力的影响,如温度变化、干旱、洪水、土壤盐碱化和土壤氮含量升高。植物微量营养元素传感技术取得突破奥胡斯大学的研究人员与马德里理工大学和法国欧洲同步辐射设施合作,发现豆科植物利用锌作为次要信号来整合环境因素并调节固氮效率。研究人员在发表于《自然》(Nature)的研究报告中发现,FUN是一种新型锌传感器,它能解码结核中的锌信号并调节固氮作用。"发现锌在植物中作为次要信号的作用确实很了不起。锌是一种重要的微量营养元素,以前从未被认为是一种信号。在筛选了超过15万株植物后,我们终于确定了锌传感器FUN,揭示了植物生物学的这一迷人之处,"该研究的第一作者林杰顺(Jieshun Lin)助理教授解释说。Jieshun Lin 展示日本莲上的根瘤。图片来源:Helene EriksenKasper Røjkjær Andersen 教授解释说:"在这项研究中,研究人员发现 FUN 是一种重要的转录因子,当土壤氮浓度较高时,它能控制结核的分解。"从农业角度来看,持续固氮可能是一种有益的性状,它可以增加氮的供应量,无论是对豆科植物,还是对依赖豆科植物生长后留在土壤中的氮的共同栽培作物或未来作物来说都是如此。这有助于为未来的研究奠定基础,为我们提供新的方法来管理我们的耕作系统,减少氮肥的使用并降低其对环境的影响。这项研究意义重大。通过了解锌和 FUN 如何调节固氮作用,研究人员正在制定优化豆科作物固氮过程的策略。这可以增加氮的输送,提高作物产量,减少对合成肥料的需求,而合成肥料会带来环境和经济成本。研究人员目前正在研究 FUN 如何产生和解码锌信号的机制。他们期待着将这些新发现应用于豆类作物,如蚕豆、大豆和豇豆。研究团队齐聚奥胡斯大学的实验室设施。图片来源:Helene Eriksen编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家研制出一种具有独特甚至矛盾特性的新型玻璃

科学家研制出一种具有独特甚至矛盾特性的新型玻璃 使用标准实验室设备在室温下轻松制备多肽玻璃。资料来源:特拉维夫大学特拉维夫大学(TAU)的研究人员创造了一种新型玻璃,这种玻璃具有独特甚至相互矛盾的特性,如具有很强的粘合性(粘性),同时又具有令人难以置信的透明性。这种玻璃在室温下与水接触后会自发形成,可为光学和电子光学、卫星通信、遥感和生物医学等一系列不同行业带来一场革命。这种玻璃是由以色列和世界各国的研究人员组成的研究小组发现的,研究小组由博士生 Gal Finkelstein-Zuta 和来自塔大生命科学院 Shmunis 生物医学与癌症研究学院和工程学院材料科学与工程系的 Ehud Gazit 教授领导。研究成果最近发表在著名的科学杂志《自然》上。制备后的固体肽玻璃。资料来源:特拉维夫大学"在我们的实验室,我们研究生物融合,特别是利用生物的奇妙特性来生产创新材料,"Gazit 教授解释说。"除其他外,我们还研究构成蛋白质的氨基酸序列。氨基酸和肽具有相互连接并形成具有确定周期性排列的有序结构的自然趋势,但在研究过程中,我们发现了一种独特的肽,它的行为与我们所知道的任何东西都不同:它没有形成任何有序的模式,而是一种无定形、无序的模式,就像玻璃一样。"在分子水平上,玻璃是一种液态物质,其分子结构缺乏有序性,但其机械特性却类似于固态。玻璃通常是通过快速冷却熔融材料并将其"冻结"在这种状态下,然后再让其结晶,从而形成一种无定形状态,具有独特的光学、化学和机械特性,以及耐久性、多功能性和可持续性。TAU 的研究人员发现,在室温条件下,由三个酪氨酸序列(YYY)组成的芳香肽在水溶液蒸发后会自发形成分子玻璃。(从左至右):Gal Finkelstein-Zuta 和 Ehud Gazit 教授。图片来源:特拉维夫大学Gal Finkelstein-Zuta 说:"我们所熟知的商用玻璃是通过快速冷却熔融材料制成的,这一过程被称为玻璃化。无定形的液态组织必须先固定下来,然后才能像晶体那样以更节能的方式排列,而这就需要能量必须将其加热到高温并立即冷却。另一方面,我们发现的玻璃是由生物构件组成的,它在室温下自发形成,不需要高温或高压等能量。只需将粉末溶解在水中就像制作酷儿汽水一样,玻璃就会形成。例如,我们用新玻璃制作镜片。我们不需要经过漫长的研磨和抛光过程,只需将一滴水滴在表面上,仅通过调节溶液量就能控制其曲率,进而控制其焦距。"TAU 的创新玻璃具有世界上独一无二的特性,这些特性甚至相互矛盾:它非常坚硬,但在室温下可以自我修复;它是一种强力粘合剂,同时在从可见光到中红外线的宽光谱范围内都是透明的。"这是第一次有人成功地在简单条件下制造出分子玻璃,"Gazit 教授说,"但比这更重要的是我们制造出的玻璃的特性。这是一种非常特殊的玻璃。一方面,它非常坚固,另一方面,它非常透明,比普通玻璃透明得多。我们都知道,普通的硅酸盐玻璃在可见光范围内是透明的,而我们创造的分子玻璃在红外线范围内是透明的。这在卫星、遥感、通信和光学等领域有很多用途。它还是一种强力粘合剂,可以把不同的玻璃粘在一起,同时还能修复玻璃上形成的裂缝。这是世界上任何玻璃都不具备的一系列特性,在科学和工程领域具有巨大的潜力,而我们从一个肽一小块蛋白质中获得了这一切。"编译自/ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人