Sora成不了王炸?Meta人工智能负责人锐评:搞搞视频就得了

Sora成不了王炸?Meta人工智能负责人锐评:搞搞视频就得了 OpenAI也在其官网文章中寄望,Sora绝不仅仅是个视频生成器,而是一个现实世界的模拟器。通过学习和模拟数据分布,生成与真实世界相似的虚拟样本,从而给现实世界提供预知信息。但这一前景被Meta的首席AI科学家Yann LeCun公开反驳,这位以直言不讳闻名的AI大佬直言:搞搞视频就好,别吹有的没的。注定失败的模拟器LeCun在X上公开发文称,通过生成像素来对世界进行模拟是一种资源浪费,且注定会失败。而该贴也引发了极大关注,一众网友在评论区华山论剑。简单来说,LeCun认为Sora模型试图推断太多不相关的细节,就像是通过试图分析足球的材料来判断足球的运行轨迹。他指出,生成式模型适用于文本内容,因为文本是离散的,且是由数量有限的符号组成的数据,在这种情况下,处理预测中的不确定性变得十分容易。但如果换到以像素为单位的预测领域,不确定性就会变得非常棘手,且不可能成功。底下的网友也纷纷发言,有人称Sora虽然令人印象深刻,但几乎每个场景都可能出现逻辑问题,比如艺术家测试视频中三头小狼莫名其妙分裂成五头小狼。这让模拟现实变得多少不太靠谱。也有人说,Sora是应梦想而生,人可以做清醒的梦,或者做不太清醒的梦。这种看起来不太清醒的发言则是赌Sora有那么一些可能实现OpenAI“世界模拟器”的壮言。与此同时,LeCun所在的Meta上周发布了一个视频联合嵌入预测架构V-JEPA,据称其通过观看视频来教导大模型理解和对物理世界建模,算是Sora之外,对世界模拟器的另一种尝试。此外,V-JEPA还可以灵活丢弃不可预测的信息,而将训练和样本运行效率提升1.5-6倍。不过,V-JEPA显然显然没在市场引发多大动静,相比Sora要低调很多。 ... PC版: 手机版:

相关推荐

封面图片

OpenAI 推出文本到视频人工智能模型 Sora

OpenAI 推出文本到视频人工智能模型 Sora 根据 OpenAI 的介绍博文,Sora 能够创建"具有多个角色、特定运动类型以及主体和背景准确细节的复杂场景"。该公司还指出,该模型能够理解物体"在物理世界中的存在方式",还能"准确解释道具并生成表达生动情感的引人注目的角色"。该模型还能根据静态图像生成视频,以及在现有视频中填充缺失的帧或扩展视频。OpenAI 的博文中包含的 Sora 生成的演示包括淘金热时期加利福尼亚州的空中场景、从东京火车内部拍摄的视频等。许多演示都有人工智能的痕迹比如在一段博物馆的视频中,地板疑似在移动。OpenAI 表示,该模型"可能难以准确模拟复杂场景的物理现象",但总体而言,演示结果令人印象深刻。几年前,像 Midjourney 这样的文本到图像生成器在模型将文字转化为图像的能力方面处于领先地位。但最近,视频技术开始飞速进步:Runway 和 Pika 等公司都展示了自己令人印象深刻的文字转视频模型,而Google的 Lumiere 也将成为 OpenAI 在这一领域的主要竞争对手之一。与 Sora 类似,Lumiere 也为用户提供了文字转换视频的工具,还能让用户通过静态图像创建视频。Sora 目前只对"红队"人员开放,他们负责评估模型的潜在危害和风险。OpenAI 还向一些视觉艺术家、设计师和电影制片人提供访问权限,以获得反馈意见。它指出,现有模型可能无法准确模拟复杂场景的物理现象,也可能无法正确解释某些因果关系。本月早些时候,OpenAI 宣布将在其文本到图像工具 DALL-E 3 中添加水印,但指出这些水印"很容易去除"。与其他人工智能产品一样,OpenAI 将不得不面对人工智能逼真视频被误认为是真实视频的后果。 ... PC版: 手机版:

封面图片

OpenAI的Sora视频生成模型也能用来渲染游戏

OpenAI的Sora视频生成模型也能用来渲染视频游戏 这篇题为《作为世界模拟器的视频生成模型》(Video generation models as world simulators)的论文由多位 OpenAI 研究人员共同撰写,揭开了 Sora 架构关键方面的神秘面纱例如,Sora 可以生成任意分辨率和长宽比(最高 1080p)的视频。根据论文所述,Sora 能够执行一系列图像和视频编辑任务,从创建循环视频、向前或向后延伸视频到更改现有视频的背景。但最吸引笔者的还是 Sora"模拟数字世界"的能力,OpenAI 的合著者如是说。在一次实验中,OpenAI 将 Sora 放到 Minecraft 上,让它在控制玩家的同时渲染世界及其动态(包括物理)。Sora 在 Minecraft 中控制一名玩家,并渲染视频游戏世界,请注意,颗粒感是由视频到 GIF 的转换工具造成的,而不是 Sora。图片来源:OpenAIOpenAI那么,Sora 是如何做到这一点的呢?正如 NVIDIA 高级研究员 Jim Fan(通过 Quartz)所说,与其说 Sora 是一个创意引擎,不如说它是一个"数据驱动的物理引擎"。它不仅能生成单张照片或视频,还能确定环境中每个物体的物理特性,并根据这些计算结果渲染照片或视频(或交互式 3D 世界,视情况而定)。合著者写道:"这些功能表明,继续扩展视频模型是开发物理和数字世界以及其中的物体、动物和人的高能力模拟器的一条大有可为的途径。"现在,Sora在视频游戏领域也有其通常的局限性。该模型无法准确模拟玻璃碎裂等基本互动的物理过程。即使在可以建模的互动中,Sora 也经常出现不一致的情况,例如在渲染一个人吃汉堡时,却无法渲染汉堡上的咬痕。不过,如果我没看错的话,Sora 似乎可以为更逼真(甚至可能是逼真)的程序生成游戏铺平道路。这既令人兴奋,又令人恐惧(考虑到Deepfake的影响)这也许就是为什么 OpenAI 选择暂时将 Sora 关在一个非常有限的访问程序后面的原因。相关文章:OpenAI 推出文本到视频人工智能模型 SoraOpenAI首个视频生成模型发布 能生成长达1分钟的高清视频 ... PC版: 手机版:

封面图片

人工智能公司 OpenAI 向好莱坞推荐视频生成技术Sora

人工智能公司 OpenAI 向好莱坞推荐视频生成技术Sora 人工智能公司 OpenAI 在好莱坞发起了魅力攻势,与派拉蒙、环球和华纳兄弟探索等主要电影公司举行了会议,展示其视频生成技术 Sora,并缓解对人工智能模型将损害电影行业的担忧。据多位知情人士透露,首席执行官萨姆•奥尔特曼和首席运营官布拉德•莱特卡普在最近几天举行的会议上向电影行业巨头的高管们做了介绍。奥尔特曼和莱特卡普展示了 Sora 一个新的生成式人工智能模型,能够根据简单的文字提示生成细节栩栩如生的视频。

封面图片

奥尔特曼选取网友提示词 用OpenAI新款大模型Sora生成视频

奥尔特曼选取网友提示词 用OpenAI新款大模型Sora生成视频 一位时髦女士漫步在东京街头,周围是温暖闪烁的霓虹灯和动感的城市标志。一名年约三十的宇航员戴着红色针织摩托头盔展开冒险之旅,电影预告片呈现其穿梭于蓝天白云与盐湖沙漠之间的精彩瞬间,独特的电影风格、采用35毫米胶片拍摄,色彩鲜艳。竖屏超近景视角下,这只蜥蜴细节拉满:OpenAI表示,公司正在教授人工智能理解和模拟运动中的物理世界,目标是训练出能够帮助人们解决需要与现实世界互动的问题的模型。在此,隆重推出文本到视频模型Sora。Sora可以生成长达一分钟的视频,同时保证视觉质量和符合用户提示的要求。OpenAI创始人兼CEOSam Altman(奥尔特曼)太会玩了,让网友评论回复Prompt(大语言模型中的提示词),他选一些用Sora生成视频。截至发稿,奥尔特曼连发多条根据网友提示词生成的视频,包括不同动物在海上进行自行车比赛、发布自制面疙瘩烹饪教学视频的祖母、两只金毛犬在山顶做播客、日落时分火星上进行的一场无人机竞赛等。但这些视频时长为9秒至17秒不等。技术层面,Sora采用扩散模型(diffusion probabilistic models)技术,基于Transformer架构,但为了解决Transformer架构核心组件注意力机制的长文本、高分辨率图像处理等问题,扩散模型用可扩展性更强的状态空间模型(SSM)主干替代了传统架构中的注意力机制,可以使用更少的算力,生成高分辨率图像。此前Midjourney与Stable Diffusion的图像与视频生成器同样基于扩散模型。同时,Sora也存在一定的技术不成熟之处。OpenAI表示,Sora可能难以准确模拟复杂场景的物理原理,可能无法理解因果关系,可能混淆提示的空间细节,可能难以精确描述随着时间推移发生的事件,如遵循特定的相机轨迹等。根据OpenAI关于Sora的技术报告《Video generation models as world simulators》(以下简称报告),跟大语言模型一样,Sora也有涌现的模拟能力。OpenAI方面在技术报告中表示,并未将Sora单纯视作视频模型,而是将视频生成模型作为“世界模拟器”,不仅可以在不同设备的原生宽高比直接创建内容,而且展示了一些有趣的模拟能力,如3D一致性、长期一致性和对象持久性等。目前Sora能够生成一分钟的高保真视频,OpenAI认为扩展视频生成模型是构建物理世界通用模拟器的一条有前途的途径。报告指出,OpenAI研究了在视频数据上进行大规模训练的生成模型。具体而言,联合训练了文本条件扩散模型,该模型可处理不同持续时间、分辨率和长宽比的视频和图像。OpenAI利用了一种基于时空补丁的视频和图像潜在代码的变压器架构。最大的模型Sora能够生成一分钟的高保真视频。结果表明,扩展视频生成模型是构建通用物理世界模拟器的有前途的途径。报告重点介绍了OpenAI将各类型视觉数据转化为统一表示的方法,这种方法能够对生成模型进行大规模训练,并对Sora的能力与局限进行定性评估。先前的大量研究已经探索了使用多种方法对视频数据进行生成建模,包括循环网络、生成对抗网络、自回归转换器和扩散模型。这些研究往往只关注于狭窄类别的视觉数据、较短的视频或固定大小的视频。而Sora是一个通用的视觉数据模型,它能够生成跨越不同时长、纵横比和分辨率的视频和图像,甚至能够生成长达一分钟的高清视频。OpenAI从大型语言模型中汲取灵感,这些模型通过训练互联网规模的数据获得通用能力。LLM范式的成功在一定程度上得益于令牌的使用,这些令牌巧妙地统一了文本的不同模式代码、数学和各种自然语言。在这项工作中,OpenAI考虑视觉数据的生成模型如何继承这些优势。虽然LLM有文本令牌,但Sora有视觉补丁。之前已经证明,补丁是视觉数据模型的有效表示。补丁是一种高度可扩展且有效的表示,可用于在多种类型的视频和图像上训练生成模型。Sora支持采样多种分辨率视频,包括1920x1080p的宽屏视频、1080x1920的竖屏视频以及介于两者之间的所有分辨率。这使得Sora能够直接以原生纵横比为不同的设备创建内容。同时,它还允许在生成全分辨率内容之前,使用相同的模型快速制作较小尺寸的内容原型。 ... PC版: 手机版:

封面图片

对sora比较深入的分析

对sora比较深入的分析 从电影和游戏行业的视角出发。指出了Sora在模拟物理现象和创意内容生成方面的局限性,也强调了其在多模态学习和生成能力上的潜力。以下是意见的总结: Sora的局限性: Sora虽然能够模拟物理现象,但其物理理解仍然脆弱,无法完全替代专业的物理引擎。 在物体交互和物理规则的理解上存在不足,可能导致超现实的结果。 Sora的生成内容依赖于大量数据的压缩和提炼,而非完全的物理模拟。 Sora的创新与潜力: 通过将视频内容压缩到隐空间,Sora有效地解决了处理高分辨率视频所需的计算资源问题。 其技术可能影响实时影像资料的处理和分析,如直播和监控视频数据。 Sora的应用可能为AI模型训练提供新路径,特别是在多模态数据和复杂现实世界情境的理解方面。 对未来的展望: Sora技术的发展可能需要在提升算力和优化算法效率之间找到平衡。 尽管Sora不会取代游戏引擎开发者或影视特效师,但它可以作为创意预览阶段的工具,帮助普通人进行民主化创作。 Sora的多模态能力可能通过3D引擎模型进一步发展,为虚拟世界的构建提供自动化支持。 这个见解强调AI在创意和模拟物理现象方面的潜力,同时也提醒我们AI技术仍有待发展,特别是在理解和模拟复杂物理世界方面。

封面图片

Meta 表示将在 Facebook 和 Instagram 上标记人工智能生成的图像

Meta 表示将在 Facebook 和 Instagram 上标记人工智能生成的图像 Facebook 和 Instagram 用户将开始在社交媒体上看到人工智能生成的图片被贴上标签,这是科技行业为区分真假图片而采取的广泛举措的一部分。Meta 周二表示,该公司正在与行业合作伙伴合作制定技术标准,使识别图像并最终识别由人工智能工具生成的视频和音频变得更容易。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人