比太阳亮万亿倍 HEPS预计2024年发射第一束光

比太阳亮万亿倍 HEPS预计2024年发射第一束光 作为我国重大科技基础设施,“高能同步辐射光源”建成后将成为世界上发射度最低、亮度最高的第四代同步辐射光源之一。官方介绍称,它可以发射比太阳亮1万亿倍的光,用“最亮”的光观察“最小”的微观世界,为国家解决在资源、能源、环境、人口和健康等诸多领域面临的挑战提供科学基础。中科院高能物理所科普道,高能同步辐射光源其实就是X光,普通的X光可以为人体做诊断,高能X光用来为机器和厚钢板等材料做诊断,研究其缺陷机制。 ... PC版: 手机版:

相关推荐

封面图片

高能同步辐射光源储存环全环贯通

高能同步辐射光源储存环全环贯通 HEPS储存环束流轨道周长约1360.4米,用于储存高能高品质电子束,同时产生同步辐射光,是世界上第三大、国内第一大光源加速器,也是我国第一台高能量同步辐射光源、第一台第四代同步辐射装置。它采用48周期的七弯铁消色散磁聚焦结构方案,6GeV能量下的束流水平自然发射度优于60pm·rad。HEPS由国家发展改革委批复立项,中国科学院高能物理研究所承担建设,2019年6月开建,建设周期6.5年。建成后,它将成为世界上亮度最高的第四代同步辐射光源之一,将面向航空航天、能源环境、生命医药等领域用户开放。2023年12月11日,HEPS主体设备安装闭环,储存环真空、注入引出、高频、低温、插入件、电源、束控、前端区等系统随即开启安装和调试。去年,HEPS直线加速器、增强器已满能量出束,通过工程指挥部验收。现在,储存环隧道完成了全环真空闭环,启动全环联调,将开启储存环束流调试新阶段。最后一个周期真空连接储存环隧道安装现场储存环隧道安装现场储存环全环贯通活动合影 ... PC版: 手机版:

封面图片

太阳于3月28日发射强烈X1.1耀斑 可能对地球产生影响

太阳于3月28日发射强烈X1.1耀斑 可能对地球产生影响 2024 年 3 月 28 日,美国国家航空航天局的太阳动力学天文台拍摄到了这幅太阳耀斑图像从右侧的亮光中可以看到。图像显示的是极紫外光的一个子集,它突出显示了耀斑中的极热物质,并被染成绿色。图片来源:NASA/SDO太阳耀斑是一种强大的能量爆发。耀斑和太阳爆发会影响无线电通信、电网和导航信号,并对航天器和宇航员构成威胁。该耀斑被列为 X1.1 级耀斑。X 级表示最强烈的耀斑,而数字则提供了有关其强度的更多信息。这个太阳动力学天文台的动画展示了它在地球上空面向太阳的情况。太阳动力学天文台旨在通过在小尺度空间和时间范围内同时以多种波长研究太阳大气,帮助我们了解太阳对地球和近地空间的影响。图片来源:NASA/戈达德太空飞行中心概念图像实验室太阳耀斑是太阳大气中磁能释放产生的强烈辐射。它们是太阳系中最强大的现象之一,能够释放出相当于数百万颗 1 亿吨级氢弹同时爆炸的巨大能量。太阳耀斑的能量可以通过多种方式影响地球。它可以扰乱卫星运行、通信系统,甚至地面电网。太阳耀斑也是地球极地出现美丽极光(即北极光和南极光)的原因。太阳耀斑根据其在 X 射线波长中的亮度进行分类。主要分为五类:A、B、C、M 和 X,其中 A 是最弱的,X 是最强的。每个类别的能量输出增加十倍。在每个类别中,耀斑又被分为 1 到 9 级,但对于特别强的耀斑来说,这个等级是开放的。例如,X1耀斑的能量是M1耀斑的十倍,而X2耀斑的强度是X1耀斑的两倍。X 级耀斑会造成全地球范围的无线电停电和持久的辐射风暴,影响地球的电离层和无线电通信。M 级耀斑会造成地球极区短暂的无线电停电和轻微的辐射风暴。C 级和更低级的耀斑通常太弱,不会对地球产生重大影响。编译自:ScitechDaily ... PC版: 手机版:

封面图片

未来3天可能爆发M级甚至X级以上太阳耀斑

未来3天可能爆发M级甚至X级以上太阳耀斑 预计未来三天,中国部分地区电离层天气可能会出现扰动。太阳耀斑(Solar flare)是太阳活动的重要表现,是太阳表面局部区域突然和大规模的能量释放过程,引起局部区域瞬时加热,向外发射各种电磁辐射,并伴随粒子辐射突然增强,所辐射出的光的波长横跨整个电磁波谱。耀斑的持续时间在几分钟到几十分钟内,在这短暂的时间里却能释放出大约相当于上百亿颗巨型氢弹同时爆炸释放的能量,或者相当于十万至百万次强大火山爆发释放的能量总和,可见其威力之大。不过对于太阳这个巨大的能源来讲,它也不过只占太阳辐射总能量的万分之一左右。一般来讲,耀斑分别为A、B、C、M和X五个级别,所释放能量依次增大。C级以下的耀斑均为小耀斑;M级耀斑为中等耀斑;X级耀斑则为大耀斑。据了解,太阳耀斑会影响向阳面的地球电离层,短波通信、导航定位以及海上搜救,还有一些应急通信,都是跟电离层状态息息相关。这一类灾害正随着人类太空科技的进步而逐渐凸显出来,尤其是对卫星、航天器安全,以及航空、通信、导航等领域产生影响和危害。 ... PC版: 手机版:

封面图片

比一千个太阳还亮 科学家揭示恒星超级耀斑异常行为背后的物理学原理

比一千个太阳还亮 科学家揭示恒星超级耀斑异常行为背后的物理学原理 太阳耀斑和超级耀斑的物理原理被认为是相同的:磁能的突然释放。超级耀斑恒星具有更强的磁场,因此耀斑也更亮,但有些恒星却表现出一种不寻常的行为最初亮度增强,持续时间很短,随后出现持续时间更长但强度较低的二次耀斑。夏威夷大学天文研究所博士后研究员杨凯和副教授孙旭东领导的研究小组建立了一个模型来解释这种现象,该模型发表在《天体物理学报》上。"通过将我们学到的有关太阳的知识应用到其他更冷的恒星上,我们能够确定驱动这些耀斑的物理原理,尽管我们永远无法直接看到它们,"杨说。"这些恒星的亮度随时间的变化实际上帮助我们'看到'了这些耀斑,它们实在是太小了,无法直接观测到。"人们认为这些耀斑中的可见光只来自恒星大气的下层。磁重联产生的能量粒子从高温、脆弱的日冕(恒星的外层)降下,加热这些层。最近的研究假设,超级耀斑恒星也能探测到来自日冕环的辐射被太阳磁场困住的热等离子体,但这些环的密度必须非常高。遗憾的是,天文学家没有办法对此进行测试,因为除了我们自己的太阳之外,没有办法在其他恒星上看到这些环。太阳动力学天文台拍摄的太阳日冕环图像,显示了"日冕雨"现象。图中还包括一张地球的图像,以提供日冕环的比例,日冕环比地球大 10 多倍。图片来源:美国宇航局太阳动力学天文台/科学可视化工作室/汤姆-布里奇曼其他天文学家利用开普勒望远镜和 TESS 望远镜的数据,发现恒星有一条奇特的光曲线类似于天体的"峰突",即亮度的跳跃。事实证明,这种光曲线与太阳现象相似,即在最初的爆发之后会出现第二个更渐进的峰值。这些光曲线让我们想起了我们在太阳上看到的一种现象,叫做太阳晚期耀斑。研究人员问道:"同样的过程能量化的大型恒星环能否在可见光下产生类似的晚期亮度增强?"为了解决这个问题,杨改编了经常用于模拟太阳耀斑环的流体模拟,并放大了环的长度和磁能。他发现,耀斑的巨大能量输入会将大量质量泵入环路,从而产生密集、明亮的可见光发射,这与预测的结果不谋而合。这些研究表明,只有当超高温气体在环的最高处冷却下来时,我们才能看到这种"撞击"闪光。在重力的作用下,这些发光物质会下落,形成我们所说的"日冕雨",这就是我们在太阳上经常看到的现象。这让研究小组确信,这个模型一定是真实的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

太阳爆发 X1.5 级大规模耀斑

太阳爆发 X1.5 级大规模耀斑 6 月 10 日,美国国家航空航天局的太阳动力学天文台记录到一个重要的太阳耀斑,被归类为 X1.5,表明强度很高。图片来源:NASA/SDO太阳耀斑是一种强烈的辐射爆发,可以在几分钟内释放出相当于十亿颗氢弹的能量。最近发生的这次耀斑被归类为 X1.5,属于较强的耀斑。X级表示最强烈的耀斑,字母后面的数字表示其强度的更多细节。这种太阳活动影响重大,因为它们会影响无线电通信、破坏电网、干扰导航信号,并对航天器和宇航员构成严重威胁。耀斑释放的高能粒子和辐射可以穿透地球大气层,影响电离层和磁场,进而干扰全球定位系统和通信信号。美国国家航空航天局的太阳动力学天文台于6月10日拍摄到了这张太阳耀斑的图像可以看到太阳右边缘的亮光。图像显示的是极紫外光的一个子集,它突出显示了耀斑中的极热物质,并被染成金色。图片来源:NASA/SDO为了帮助预测和减轻这些影响,美国国家航空航天局(NASA)在国家空间天气工作中发挥着至关重要的作用。美国国家航空航天局的航天器舰队,包括太阳动力学观测站,对太阳和我们的空间环境进行持续观测。这些航天器在研究太阳磁场活动、大气状况以及影响地球的更广泛空间环境等方面发挥着重要作用。对于那些有兴趣了解此类太阳活动可能如何影响地球并随时了解空间天气状况的人来说,建议访问海洋大气局的空间天气预报中心( ... PC版: 手机版:

封面图片

NASA太阳动力学天文台再次捕捉到两个X级太阳耀斑

NASA太阳动力学天文台再次捕捉到两个X级太阳耀斑 美国国家航空航天局的太阳动力学天文台于 6 月 1 日拍摄到了这两幅太阳耀斑的图像在图像中心附近可以看到明亮的闪光。这些图像显示了极紫外光的一个子集,它突出显示了耀斑中的极热物质,并被染成蓝色和金色。图片来源:NASA/SDO太阳耀斑是太阳发出的强大辐射脉冲,尤其是来自磁场高度集中的太阳黑子周围的活跃区域。这些耀斑发生时,积聚的磁场能量会突然以辐射的形式释放出来,辐射范围几乎涵盖整个电磁波谱从无线电波到 X 射线和伽马射线。太阳耀斑的强度分为三类:C、M 和 X,其中 C 是最弱的,X 是最强的。每个类别都有一个从 1 到 9 的等级,进一步量化耀斑的威力。X 级耀斑会对地球造成严重破坏,影响卫星通信、导航系统和电网。太阳耀斑通常与日冕物质抛射(CMEs)有关,这是太阳活动的另一种形式,数十亿吨太阳粒子被抛射到太空中。这可能会导致地磁暴,当与地球磁场相互作用时,可能会产生壮观的极光或南北极光。了解太阳耀斑对于预测空间天气事件至关重要,有助于做好准备,保护地球上的技术系统和基础设施免受这些太阳现象的潜在不利影响。美国宇航局太阳动力学天文台美国国家航空航天局(NASA)的太阳动力学天文台(SDO)是一项致力于通过在小尺度空间和时间范围内同时以多种波长研究太阳大气来了解太阳对地球和近地空间影响的任务。SDO于2010年2月11日发射升空,是美国国家航空航天局"与星共存"(LWS)计划的一部分。该观测站配备了一套仪器,通过观测可以更全面地了解驱动地球环境变化的太阳动力学。星载主要仪器之一是大气成像组件(AIA),它能以多种波长捕捉日冕和色球层的高分辨率图像,以更好地了解太阳辐射的输出及其对我们大气层的影响。另一个重要仪器日震和磁场成像仪(HMI)绘制太阳磁场图,并利用日震学窥探太阳不透明表面下的情况,以详细了解太阳内部动态。同时,极端紫外线变异实验(EVE)以前所未有的精度测量太阳的紫外线输出,这对于了解地球电离层和热层的变化至关重要。通过提供几乎连续不断的数据流,SDO 在我们预测空间天气事件的能力方面发挥着至关重要的作用,有助于减轻空间天气事件对空间和地面技术系统的影响。SDO 的详细观测有助于增进我们对太阳大气活动及其对空间天气影响的了解。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人