金刚石纳米膜可使电子设备的温度降低10倍 充电速度提高5倍

金刚石纳米膜可使电子设备的温度降低10倍 充电速度提高5倍 热量通常是电的一种不幸的副作用,过多的热量会损坏元件和设备,有时甚至会造成危险。因此,管理和消除热量是电子设计的一个主要考虑因素,散热器通常由铜或铝制成。问题是,这些金属也是良好的导电体,因此通常还需要另一个绝缘层。因此,在这项新研究中,弗劳恩霍夫研究小组转向了金刚石,因为金刚石是热的优良导体,但却是电的绝缘体。该项目的科学家马蒂亚斯-米勒(Matthias Mühle)说:"我们希望用我们的金刚石纳米膜取代中间层,因为金刚石可以被加工成导电路径,所以它能非常有效地将热量传递到铜上。由于我们的膜是柔性的、独立的,它可以放置在元件或铜的任何位置,也可以直接集成到冷却电路中。"研究小组的钻石纳米膜样品 弗劳恩霍夫美国中西部中心 CMW金刚石散热器早已经开始投入使用,但其厚度通常超过 2 毫米,很难粘贴到元件上。而纳米膜只有一微米厚,柔韧性好,只要轻轻加热到80 °C(176 °F),就能粘合到电子元件上。研究小组通过在硅晶片上生长多晶金刚石,然后分离和蚀刻金刚石层来制造纳米散热膜。研究人员估计,金刚石纳米膜可将电子元件的热负荷降低 10 倍,这当然会提高这些元件和整个设备的能效和使用寿命。研究小组表示,如果将其应用到充电系统中,这种薄膜可将电动汽车的充电速度提高五倍。也许最重要的是,由于金刚石纳米膜可以在硅晶片上制造,因此制造工艺应该比较容易扩大到工业用途。该团队已经为这项技术申请了专利,并计划于今年晚些时候开始在电动汽车和电信领域的逆变器和变压器中进行测试。 ... PC版: 手机版:

相关推荐

封面图片

金刚石芯片商用在即 性能优秀成本却高出上万倍

金刚石芯片商用在即 性能优秀成本却高出上万倍 而在氮化镓和碳化硅之后,金刚石也就是钻石,作为一种新半导体材料闯入了大家的视线当中,并引发了研究人员和行业专家的关注。金刚石以其无与伦比的硬度和亮度而闻名,半个多世纪以来,珠宝首饰是它最广泛也是最有价值的用途,如今它又因自己的特性,在半导体材料中开辟了一番广阔的前景。金刚石芯片,有何优势与现有的半导体材料相比,金刚石主要具有三大优势:热管理、成本/效率优化和二氧化碳减排。在所有传统的功率转换器中,冷却系统都是一个必要的累赘。与大多数半导体材料不同,金刚石的电阻率随温度升高而降低。因此,用这种材料制成的设备在 150 摄氏度(功率设备的典型工作温度)下比在室温下性能更好。虽然必须花费大量精力来冷却暴露在高温下的硅或碳化硅器件,但只需让金刚石在运行过程中找到一个稳定的状态即可。金刚石还是一种良好的散热器。由于散热损耗少、散热能力强且能在高温下工作,用金刚石有源器件制成的转换器可以比基于硅的解决方案轻 5 倍、小 5 倍,比基于碳化硅的解决方案轻 3 倍、小 3 倍。在设计设备和转换器时,必须在系统的能效与成本、尺寸和重量之间做出权衡。金刚石也不例外,但金刚石能在关键参数上为更节能的电动汽车带来价值。如果重点是降低设备成本,那么可以设计出比碳化硅芯片成本低 30% 的金刚石芯片,因为在电气性能和效率相同的情况下,金刚石芯片比同等的碳化硅芯片少消耗 50 倍的金刚石面积,而且热管理更好。如果注重效率,金刚石与碳化硅相比,可将能量损耗降低三倍,芯片体积最多可缩小 4 倍,从而直接节省能耗。如果侧重于系统体积和重量,通过提高开关频率,金刚石器件可将无源元件的体积比基于碳化硅的转换器减少四倍。除了体积上的减少之外,还可以通过缩小散热器来实现。值得一提的是,金刚石还具备极高的绝缘性。衡量不同材料绝缘性好坏的一大重要指标是击穿电场强度,表示材料能承受的最大电压不造成电击穿。作为对比,硅材料的击穿电场强度为0.3 MV/cm左右,SiC为3 MV/cm,GaN为5 MV/cm,而钻石则为10 MV/cm,而且即使是非常薄的钻石切片也具有非常高的电绝缘性,能够抵抗非常高的电压。从具体用途来看,金刚石基板具有优异的导热性,可为高功率 5G 元件(基站、放大器)实现高效散热,确保运行稳定性并防止过热。5G 基础设施的不断推出和对更快数据速度的无限需求,推动了各种 5G 相关设备对金刚石基板的采用。5G 数据流量的指数级增长意味着需要设备能够管理在极高频率下产生的大功率密度。金刚石衬底为这些问题提供了答案。此外,与传统的硅基解决方案相比,金刚石衬底与氮化镓或碳化硅配对,可制造出工作电压更高、频率更高、能效更高的功率器件,电动汽车、用于可再生能源的电源逆变器、工业电机驱动器、大功率激光器和先进电源都是金刚石衬底应用日益广泛的领域。金刚石衬底作为出色的散热器,可以延长这些设备的使用寿命和可靠性。而随着向更清洁能源的过渡和汽车电气化进程的加快,金刚石衬底也将发挥至关重要的作用。尽量减少功率转换过程中的能量损耗可以提高整体效率,这是电动汽车和可持续电网的一个重要方面。金刚石基底能够设计出更紧凑、重量更轻的电力电子器件,这对电动汽车等空间受限的应用至关重要。国外的Virtuemarket的数据指出,2023年全球金刚石半导体基材市场价值为1.51亿美元,预计到2030年底市场规模将达到3.42亿美元。在2024-2030年的预测期内,该市场预计将以复合年增长率增长12.3%。其认为,在中国、日本和韩国等国家电子和半导体行业不断增长的需求的推动下,亚太地区预计将主导金刚石半导体衬底市场,到 2023 年将占全球收入份额的 40% 以上。金刚石芯片,面临挑战当然,性能如此优秀的半导体材料,在其他方面不免受到一些限制。首先就是成本。与硅相比,碳化硅的成本是其 30 到 40 倍,而氮化镓的成本是其 650 到 1300 倍。用于半导体研究的合成金刚石材料的价格约为硅的 10000 倍。另一个问题是金刚石晶片尺寸太小,市场上最大的金刚石晶片尺寸还不到 10 平方毫米。使用离子注入法掺杂这种材料很困难,而且这种材料的电荷载流子活化效率在室温下会降低。为了解决生产应用方面的问题,不少公司都在努力攻关金刚石量产的相关技术。2023年初,日本佐贺大学与日本Orbray共同合作开发了金刚石制成的功率半导体,他们在蓝宝石衬底上制成2英寸的单晶圆,2023年10月,美国的Diamond Foundry于成功制造出了世界上第一块单晶钻石晶圆,直径约4英寸。除了上述两家公司外,位于法国格勒诺布尔的半导体金刚石初创公司Diamfab也在为了金刚石芯片的技术而不断努力。今年3月,该公司宣布获得870万欧元的首轮融资。这笔资金来自Asterion Ventures、法国政府代表法国政府管理的法国科技种子基金(法国2030的一部分)、Kreaxi与Avenir Industrie Auvergne-Rhône-Alpes地区基金、Better Angle、Hello Tomorrow和格勒诺布尔阿尔卑斯大区。Diamfab 是法国国家科学研究中心(CNRS)实验室奈尔研究所(Institut Néel)的衍生产品,也是 30 年来合成金刚石生长研发的成果。Diamfab 项目最初在格勒诺布尔阿尔卑斯 SATT Linksium 进行孵化,该公司于 2019 年 3 月成立,由两位纳米电子学博士和半导体金刚石领域公认的研究人员 Gauthier Chicot 和 Khaled Driche 创办。Diamfab表示,为了满足汽车、可再生能源和量子产业的半导体和功率元件市场需求,公司在合成金刚石的外延和掺杂领域开发出了突破性技术。其在合成金刚石的外延和掺杂领域开发出了突破性技术,并拥有四项专利,其专长在于薄金刚石层的生长和掺杂,以及金刚石电子元件的设计。第一轮融资将使 Diamfab 能够建立一条试验生产线,对其技术进行工业化前处理,加速其发展,从而满足对金刚石半导体日益增长的需求。Diamfab此前已经申请了全金刚石电容器的专利,并正在与该领域的领先企业合作, Diamfab 首席执行官 Gauthier Chicot 说道:“在其他参数中,我们已经实现了我们的目标:超过 1000A/cm2 的高电流密度和大于 7.7MV/cm 的击穿电场。这些是未来设备性能的关键参数,并且已经优于 SiC 等现有材料为电力电子设备提供的参数。此外,我们有一个明确的路线图,到 2025 年实现 4 英寸晶圆,作为大规模生产的关键推动因素。”“在过去的两年中,我们在与研发团队合作加工高附加值金刚石晶片方面取得了重大进展。现在,我们基于双重业务模式的应用导向方法将使我们能够与更广泛的工业合作伙伴合作,开发和销售高附加值金刚石晶片和我们的专利金刚石设备制造工艺,同时还能以轻型工厂模式直接向最终用户销售产品,”Chicot 说。“在像我们这样的尖端产业的发展过程中,每个阶段都至关重要。试点项目将促进我们与合作伙伴的许多讨论,并加强我们之间的关系。与致力于该行业和气候的投资者合作,最重要的是他们了解该行业的制约因素和联系,这一点至关重要,” Chicot表示。“我们开发的技术可以大大减少半导体的历史碳足迹,并通过转移欧洲的关键产业来实现这一目标,这也是我们与 Asterion 合作的投资重点之一,”负责此次交易的 Asterion Ventures 合伙人 Charles-Henry Choel 解释说,“工业深度技术公司需要冷静、长期的支持,而这正是我们所能提供的。”无独有偶,美国的Advent Diamond也是这样一家致力于将金刚... PC版: 手机版:

封面图片

新型金刚石织物涂层制成的衣物能让穿着者感觉更凉爽

新型金刚石织物涂层制成的衣物能让穿着者感觉更凉爽 在沙迪-豪希亚尔(Shadi Houshyar)和艾莎-雷曼(Aisha Rehman)博士的带领下,澳大利亚皇家墨尔本理工大学的科学家团队最近将纳米金刚石粉末与聚氨酯和溶剂混合在一起。然后通过电纺丝技术将所得溶液应用于普通棉布的一面。经过固化后,溶液形成了一层涂层,由纳米纤维网和较大的棉纤维粘合而成。如果织物用于服装,涂层面将朝向穿着者的皮肤。外表面则没有涂层,以免吸入环境热量。棉布的涂层面(左)和未涂层面涂层也可用于其他类型的织物 皇家墨尔本理工大学 Cherry Cai将材料样品未涂层的一面朝向附近的 100 ºC (212 ºF)热板放置 10 分钟,然后从该区域移开,再冷却 10 分钟。结果发现,与未经处理的棉花对照样本相比,经过处理的样本在冷却期间通过其涂层面释放的热量要多出 2 至 3 ºC(3.6 至 5.4 ºF)。经过处理的棉花还能更好地抵御紫外线,它的透气性和吸湿性不如未经处理的棉花,但仍在可接受的范围内。豪希亚尔说:"虽然两到三度的变化看似不大,但在长时间的舒适度和对健康的影响方面确实存在差异,而且在实际应用中,这可能是关闭或打开空调的区别。我们还有可能探索如何利用纳米金刚石来保护建筑物不致过热,从而带来环境效益。"有关这项研究的论文最近发表在《先进技术聚合物》(Polymers for Advanced Technologies)杂志上。 ... PC版: 手机版:

封面图片

新型玻璃膜可将温度降低7.2°C 显著减少建筑能源消耗

新型玻璃膜可将温度降低7.2°C 显著减少建筑能源消耗 在炎热的天气里,家中高达 87% 的热量是通过窗户散发的。阳光中的紫外线很容易穿过玻璃,使房间升温,从而增加了您需要打开空调的可能性,或者通过拉上窗帘或拉下百叶窗来放弃任何光线(同样,也放弃了美景)。不过,圣母大学的研究人员已经开发出一种窗户涂层,可以阻挡产生热量的紫外线和红外线,同时允许可见光进入,从而降低室温和制冷能耗。透明涂层在减少产生热量的紫外线和红外线的同时,还能提供完整的视野圣母大学 MÖNSTER 实验室(分子/纳米级传输和能源研究实验室)负责人罗腾飞说:"就像偏振太阳镜一样,我们的涂层可以降低入射光的强度,但与太阳镜不同的是,我们的涂层即使在不同角度倾斜时也能保持清晰和有效。"2022年,罗和他的同事利用平面多层(PML)光子结构制造了一种玻璃涂层。这些堆叠的超薄层具有独特的折射率,可以根据光的波长选择性地透射或反射光线。他们将二氧化硅、氧化铝和氧化钛堆叠在玻璃基底上,再在上面覆盖一层薄薄的硅聚合物(PDMS),以反射热辐射(即受热表面向各个方向发射的电磁辐射),从而产生了一种透明涂层,他们说这种涂层的性能优于市场上的其他减热涂层。研究人员决心改进他们之前的工作。由于窗户通常是垂直安装的,一天中直射到窗户上的阳光会随着太阳的移动而变化。现有的窗户涂层往往针对以 90 度角进入的光线进行优化,因此它们阻挡光线的能力取决于所谓的太阳入射角。中午是一天中最热的时候,太阳光以斜角射入窗户,这意味着大多数涂层的阻挡效果较差。研究人员没有采用试错法来解决这个问题,而是使用了量子计算辅助机器学习模型。具体来说,他们使用了主动学习和量子退火,前者是机器学习的一个子集,其中学习算法可以交互式地询问用户以标注数据,后者则利用量子物理学来寻找最优或接近最优的元素组合。量子辅助主动学习方法使研究人员能够优化 PML 结构的配置,并为他们带来了绝对的优势,罗告诉《新图集》。"它可以用来解决非常复杂的优化和设计问题,"他说。"这项工作中的复杂优化问题很难用传统算法来解决。"研究人员利用以前使用过的元件,制造出了一种透明涂层,可以在很大的入射角度范围内选择性地透射和反射光线。然后,他们对其进行了测试。镀膜窗户和普通玻璃窗户被垂直放置在相同的室外试验室中。研究人员测量了每个室的白天温度。他们还将玻璃窗水平放置,面向天空,模拟机动车的天窗进行测试。与普通玻璃相比,镀膜玻璃表现出更优越的性能,在各种入射角度下都能将温度降低 41.7 °F 至 45 °F(5.4 °C 7.2 °C)。"阳光与窗户之间的角度一直在变化,"罗说。"无论太阳在天空中的位置如何,我们的涂层都能保持功能性和效率。"为了估算使用光子结构作为窗户的制冷节能效果,研究人员使用 EnergyPlus 软件模拟了不同城市标准办公室的能耗。结果表明,美国所有城市每年可节约高达 97.5 兆焦耳/平方米。这种节能效果在世界各地的城市都得到了体现,包括热带气候地区的城市。上图:地图显示美国使用窗户涂层后估计每年可节省的制冷能源。下图:全球 16 个选定城市的年制冷能耗估算。研究人员预计,他们的新型窗户涂层将有多种用途,包括商业、住宅建筑和汽车。"我认为它对汽车车窗特别有用,"罗告诉《新地图集》。"它可以用作天窗/月窗玻璃。它甚至可以用于挡风玻璃,你必须保持挡风玻璃的透明,但它会泄露大量的空间加热紫外线和红外(红外线)阳光。"研究人员仍需确定窗口涂层的可扩展性。"这还不得而知,"罗说。"我不能说它是否......更便宜,但随着我们努力扩大规模,它们可能会很便宜。这种涂层可以使用工业规模的涂层工艺制造。涂层中的材料都是非常普通的材料(没有外来材料)。"这项研究发表在《细胞报告物理科学》杂志上。 ... PC版: 手机版:

封面图片

新型自适应屋面瓦无需电子设备 还可降低供暖和制冷成本

新型自适应屋面瓦无需电子设备 还可降低供暖和制冷成本 他们在《设备》(Device)杂志上发表的一篇论文中介绍了一种自适应瓦片,这种瓦片以阵列的形式安装在屋顶上时,可以降低冬季的取暖费和夏季的制冷费,而且不需要电子设备。该研究的第一作者肖说:"它可以根据瓷砖的温度在加热状态和冷却状态之间切换。目标温度约为华氏 65 度约为摄氏 18 度。"这个约四英寸见方的被动式体温调节装置融合了廖昌永在热科学方面的专长和霍克斯在机械设计方面的工作一个可移动的表面,可以根据不同的温度改变其热特性。几年前,他们在往返于圣巴巴拉和加利福尼亚北部的长途旅行中萌生了这个项目的想法。瓦片的开发和功能"当时我们的配偶都在斯坦福大学,所以我们一起去旅行,想知道我们有可能一起做些什么,"廖说,他和霍克斯一样,都是加州大学伯克利分校机械工程系的教授。他们随后获得了加州纳米系统研究所(California NanoSystems Institute)的种子基金,用于设计机械可调热设备。直到肖想到使用蜡马达,自适应瓦片的想法才最终成型。根据蜡在温度作用下体积的变化,蜡马达产生压力,从而移动机械零件,将热能转化为机械能。蜡电机常见于洗碗机和洗衣机等各种电器以及航空航天业等更专业的应用中。就瓷砖而言,蜡马达根据其状态可以推动或缩回活塞,从而关闭或打开瓷砖表面的百叶窗。因此,在气温较低时,当蜡是固体时,百叶窗会关闭并平铺,露出能吸收阳光的表面,最大限度地减少通过辐射散热。优势和测试结果但是,一旦温度达到 18 摄氏度左右,蜡就会开始融化和膨胀,推动百叶窗打开,露出一个反射阳光和散发热量的表面。此外,在熔化或冷冻过程中,蜡还会吸收或释放大量热量,进一步稳定瓷砖和建筑物的温度。肖解释说:"因此,我们有一种可预测的开关行为,可在一个非常小的范围内工作。"根据研究人员的论文,测试表明,与覆盖传统反射或吸收涂层的非开关器件相比,冷却能耗降低了 3.1 倍,加热能耗降低了 2.6 倍。由于采用了蜡质电机,该装置的运行不需要电子设备、电池或外部电源,而且与其他类似技术不同的是,它的响应速度在目标范围的几度之内。此外,该装置设计简单,便于定制可使用不同的热涂层和各种类型的蜡,使装置在所需的温度范围内运行,同时也便于大规模制造。霍克斯说:"该装置仍是一个概念验证,但我们希望它能带来新技术,有朝一日能对建筑物的能源消耗产生积极影响。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

革命性漫游车技术控制月球极端温度

革命性漫游车技术控制月球极端温度 名古屋大学的新型热开关装置使月球车能够有效管理月球上的极端热条件,延长其运行寿命并减少能源消耗。资料来源:Shinichiro Kinoshita, Masahito Nishikawara宇航员驾驶航天器在月球地形上航行时,不仅要面对零重力和可能掉落陨石坑的危险,还要应对剧烈的温度变化。月球的气候从127°C(260°F)的灼热高温到-173°C(-280°F)的刺骨低温不等。日本名古屋大学的研究小组开发了一种热开关装置,旨在提高月球车的耐用性。他们与日本宇宙航空研究开发机构(Japan Aerospace Exploration Agency)的合作研究在《应用热工程》(Applied Thermal Engineering)杂志上发表。未来的月球任务需要可靠的机器,能够在这种恶劣的条件下工作。日本名古屋大学的一个研究小组认识到未来的月球探测需要坚固耐用的机器,他们发明了一种热开关装置,有望延长月球探测车的运行寿命。他们与日本宇宙航空研究开发机构(Japan Aerospace Exploration Agency)合作进行的研究发表在《应用热工程》(Applied Thermal Engineering)杂志上。热开关技术:月球条件下的解决方案首席研究员 Masahito Nishikawara 说:"能够在白天散热和夜间隔热之间切换的热开关技术对于长期月球探测至关重要。白天,月球车处于活动状态,电子设备会产生热量。由于太空中没有空气,电子设备产生的热量必须主动冷却和散发。另一方面,在极其寒冷的夜晚,电子设备必须与外界环境隔绝,以免过于寒冷。"目前的设备往往依靠加热器或连接到环形热管上的无源阀门来实现夜间保温。然而,加热器成本高昂,而被动阀会提高流体流速,导致压力下降,从而影响热量传递效率。Nishikawara 团队开发的技术提供了一个中间地带。它的压降比被动阀低,耗电量比加热器低,在夜间可以保持热量,而不影响白天的冷却性能。运行机制和能源效率该团队开发的热控装置将环形热管(LHP)与电动流体动力(EHD)泵结合在一起。白天,EHD 泵不工作,使 LHP 正常运行。在月球车中,LHP 使用的制冷剂在蒸气和液体状态之间循环。当设备升温时,蒸发器中的液态制冷剂汽化,通过月球车的散热器释放热量。然后,蒸气又冷凝成液体,返回蒸发器再次吸收热量。这一循环由蒸发器中的毛细力驱动,因此非常节能。夜间,EHD 泵会施加与 LHP 流量相反的压力,阻止制冷剂的流动。电子设备与夜间寒冷的环境完全隔绝,用电量极低。该团队的研究包括选择 EHD 泵的电极形状、设备设计、性能评估,以及利用 EHD 泵停止低压涡轮机运行的演示测试。结果表明,夜间耗电量几乎为零。技术的影响和未来应用Nishikawara 说:"这种开创性的方法不仅确保了漫游车在极端温度下的生存,还最大限度地减少了能源消耗,这在资源有限的月球环境中是一个至关重要的考虑因素。它为未来月球任务的潜在整合奠定了基础,有助于实现持续的月球探测努力。"这项技术的意义不仅限于月球车,还可广泛应用于航天器的热管理。将 EHD 技术集成到热流体控制系统中,可以提高热传导效率,减轻运行挑战。未来,这将在太空探索中发挥重要作用。这种热开关装置的开发是为长期月球任务和其他太空探索活动开发技术的一个重要里程碑。所有这些都意味着,未来月球车和其他航天器应能更好地在极端的太空环境中运行。编译来源:ScitechDailyDOI: 10.1016/j.applthermaleng.2024.123428 ... PC版: 手机版:

封面图片

哈佛大学研制出大尺寸玻璃金属膜 用于捕捉天体的高分辨率图像

哈佛大学研制出大尺寸玻璃金属膜 用于捕捉天体的高分辨率图像 哈佛大学的科学家们利用先进的纳米制造技术,创造出一种突破性的 10 厘米玻璃金属膜,用于捕捉天体的高分辨率图像。这种适合大规模生产的大型金属膜为空间科学和电信领域带来了新的可能性,其成像性能可与传统镜头媲美。上图是 metalens 从马萨诸塞州剑桥市一栋大楼的屋顶拍摄的月球图像。图片来源:Capasso 实验室/哈佛 SEAS这项研究最近发表在《ACS Nano》杂志上。纳米加工技术的突破"利用最先进的半导体代工工艺在一个前所未有的大平面透镜上精确控制数百亿纳米柱尺寸的能力是一项纳米制造壮举,它为空间科学和技术带来了令人兴奋的新机遇,"SEAS应用物理学罗伯特-L-华莱士(Robert L. Wallace)教授兼电气工程文顿-海斯(Vinton Hayes)高级研究员、该论文的资深作者费德里科-卡帕索(Federico Capasso)说。大多数平面金属透镜利用数百万个柱状纳米结构聚焦光线,其大小与一块闪粉差不多。2019 年,卡帕索和他的团队利用一种名为深紫外(DUV)投影光刻的技术开发出了厘米级的金属透镜,这种技术可以投影形成纳米结构图案,直接蚀刻到玻璃晶片上,省去了以往金属透镜所需的耗时的写入和沉积过程。剑桥科学中心屋顶的 metalens 拍摄的天鹅座北美星云图像。图片来源:Capasso 实验室/哈佛 SEAS紫外投影光刻技术通常用于在智能手机和计算机的硅芯片上绘制精细的线条和形状。曾在 SEAS 就读研究生、现为 Capasso 团队博士后的 Joon-Suh Park 证明,该技术不仅可用于批量生产金属透镜,还能增大其尺寸,以应用于虚拟现实和增强现实。但是,要将金属膜做得更大,以便应用于天文学和自由空间光通信,这就带来了一个工程问题。克服工程挑战"光刻工具有一个很大的局限性,因为这些工具是用来制造计算机芯片的,所以芯片尺寸被限制在不超过20至30毫米,"论文共同第一作者Park说。"为了制造直径为 100 毫米的透镜,我们需要找到一种绕过这一限制的方法"。Park 和研究小组开发出了一种利用 DUV 投影光刻工具拼接多个纳米柱图案的技术。研究人员将透镜分为 25 个部分,但考虑到旋转对称性,只使用一个象限的 7 个部分,结果表明 DUV 投影光刻技术可以在几分钟内将 187 亿个设计好的纳米结构图案刻画到 10 厘米的圆形区域上。研究小组还开发了一种垂直玻璃蚀刻技术,可以在玻璃上蚀刻出高纵横比、光滑侧壁的纳米柱。SEAS 博士后研究员、论文共同第一作者 Soon Wei Daniel Lim 说:"使用相同的 DUV 投射光刻技术,我们可以在更大的玻璃直径晶片上生产大直径、像差校正元光学器件或更大的透镜,因为相应的 CMOS 制造工具在业内越来越多。"这种直径为 10 厘米的玻璃金属镜片能以高分辨率拍摄太阳、月亮和遥远星云的图像。图片来源:Capasso 实验室/哈佛大学 SEASLim 在全面模拟和描述大规模制造过程中可能出现的所有制造误差以及这些误差如何影响金属透镜的光学性能方面发挥了主导作用。在解决了可能存在的制造难题后,研究人员展示了金属膜在天体成像方面的强大功能。Park 和研究小组将 metalens 安装在带有彩色滤光片和相机传感器的三脚架上,然后登上哈佛大学科学中心的屋顶。在那里,他们拍摄了太阳、月球和北美星云的图像,北美星云是天鹅座的一个暗星云,距离地球约 2590 光年。卡帕索实验室的研究生、论文合著者阿尔曼-阿米尔詹(Arman Amirzhan)说:"我们能够获得非常详细的太阳、月球和星云图像,这些图像可与传统镜头拍摄的图像相媲美。"研究人员仅使用金属镜片,就能拍摄到与美国国家航空航天局当天拍摄的图像相同的太阳黑子群。这种透镜可以经受住极热、极冷和航天发射过程中的剧烈振动,而不会出现任何损坏或光学性能下降。由于其尺寸和单片玻璃成分,该透镜还可用于远距离电信和定向能量传输应用。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人