研究人员破解垂枝桃树枝条向下生长的独特生长习性

研究人员破解垂枝桃树枝条向下生长的独特生长习性 植物生长的一个基本前提是芽向上生长,根向下生长。美国植物生物学家学会出版的国际权威期刊《植物生理学》上发表的一项新研究揭示了一个引人入胜的问题的答案:为什么垂枝品种违背了这种自然生长模式?研究人员发现了一种名为 WEEP 的蛋白质,这种蛋白质在垂枝桃树中缺失。他们的研究结果表明,只需删除一个基因的DNA,就能彻底改变荷尔蒙辅酶的定位,从而导致嫩枝有意向下生长,就像根一样。这项研究的通讯作者考特尼-霍兰德博士指出:"它为如何形成辅助素梯度的谜题带来了新的线索。我们很兴奋也很惊讶地发现了一些新的东西,涉及到一个所有植物中都有的基因,但却没有从拟南芥研究中发现"。与普通桃枝相比,垂枝桃枝的嫩梢上的辅助素分布发生了翻转。垂枝嫩梢上部组织而非下部组织中的辅助素响应基因表达量更大,这意味着垂枝的向下生长是由于嫩梢上部组织中的辅助素浓度更高。霍兰德说:"通过确定与树木如何预先确定和调节枝条方向相关的机制,我希望能够开发出新的育种策略和栽培方法,使果树能够轻松、经济地靠近和窄行种植,我们的研究突显了植物的微小变化如何能产生如此巨大的影响"。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

韩国研究人员实现在常压下生长钻石 耗时仅15分钟

韩国研究人员实现在常压下生长钻石 耗时仅15分钟 在地球上,唯一具备适当自然条件的地方是地幔深处,在地下数百英里处。只有在火山爆发时,它们才会被带到更接近地表的地方,因此它们非常罕见。再加上历史上一些巧妙的营销手段,这块小石头就变得非常抢手了。几十年来,科学家们一直在实验室中培育人工钻石,但通常仍需要极端条件近 50000 个大气压的压力和约 1500 °C (2,732 °F)的温度。但现在,一种新技术已经在正常压力水平和较低温度下培育出了钻石。这种新方法由韩国基础科学研究所(IBS)和蔚山国立科学技术研究院(UNIST)的一个团队开发,利用一种由镓、铁、镍和硅组成的液态金属合金合成钻石。在一个 9 升(2.4 加仑)的容器中,将这种金属混合物置于温度为 1025 °C (1877 °F)的甲烷和氢气中。15 分钟后,气体从系统中排出,底部会形成一层金刚石薄膜。这层膜可以很容易地剥离出来,用于研究或直接投入工作。通常情况下,合成金刚石技术需要"种子颗粒"让第一批碳原子吸附在周围形成金刚石。但在这种情况下,液态金属中的微量硅似乎有助于碳原子形成簇。最终得到的是非常纯净的钻石。其他金属可以替换使用,但硅似乎对这一过程至关重要。研究人员现在计划研究其他液态金属合金和气体,甚至是固态碳,看看它们能不能制造出钻石。虽然我们不可能很快戴上在液态金属大桶中培育的钻石,但它们可以首先在工业应用中找到用武之地。这项研究发表在《自然》杂志上。 ... PC版: 手机版:

封面图片

研究人员探索维生素A在精神疾病发展中的作用

研究人员探索维生素A在精神疾病发展中的作用 "我们之前的研究表明,这可能与维生素 A 或视黄醇水平有关,众所周知,维生素 A(或视黄醇)在脑细胞的分化、成熟和突触功能中发挥着重要作用。"William Reay 及其同事的新研究结合了数千个个体基因组的汇总统计数据,找出了调节血液中视黄醇水平的遗传因素。凯恩斯教授说:"我们基本上将视黄醇水平与基因变异相匹配,从而更好地了解了参与血液中视黄醇吸收和转运的基因。"除了了解人类视黄醇水平的遗传结构外,凯恩斯教授说,这项研究的真正价值在于更好地了解视黄醇在一系列复杂健康状况中的作用。"我们可以利用影响视黄醇的基因变异来替代大型基因研究中的维生素水平,这些研究涉及数百万与17000多个特征相关的个体。与观察性研究相比,这是一种强大的方法,因为它不会受到相关性或反向因果关系的干扰。""利用这种方法,我们可以支持视黄醇在炎症、血浆脂质、脂肪率、视力、微生物组、大脑结构/连接性、哮喘、慢性阻塞性肺病和其他一些性状中的重要作用。这一点意义重大,因为我们使用合成视黄醇作为药物,并有可能通过基因信息精准医学方法指导其应用。例如,患有自身免疫性疾病的人体内视黄醇水平较低。"要全面了解视黄醇对人体健康的影响,还有很多工作要做,但我们确实知道它非常重要,而且很有效。"凯恩斯教授说:"就像盐和糖一样,我们需要足够的维生素,但如果过多或过少,都会引起各种问题。"维生素 A 是一种脂溶性营养素,在肉类以及绿色和橙色植物中含量丰富。植物中的β-胡萝卜素在肝脏中转化为视黄醇。过多的维生素 A 也会对发育中的胎儿造成影响,因此孕妇和育龄妇女应慎用高剂量的补充剂和维甲酸类药物。应始终在医生的建议下适量服用。"视黄醇对我们的大脑、免疫系统、皮肤和视力等多方面的发育都非常重要。了解它的作用以及如何更有效地利用它来改善人类健康非常重要,"凯恩斯教授说。点击此处阅读发表在《自然》杂志上的题为《循环视黄醇的遗传影响及其与人类健康的关系》的研究报告。参考文献:"循环视黄醇的遗传影响及其与人类健康的关系",2024 年 2 月 19 日,《自然通讯》。 DOI: 10.1038/s41467-024-45779-x这项研究由医学研究委员会和英国国家卫生研究院生物医学研究中心资助。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员利用声音培育土壤真菌 可恢复受损的生态系统

研究人员利用声音培育土壤真菌 可恢复受损的生态系统 研究发现,植物将声音视为一种机械刺激,可以促进养分流动、促进生长和增强免疫系统。现在,南澳大利亚弗林德斯大学(Flinders University)的一项新研究表明,土壤可能也是如此。研究人员调查了声刺激如何影响一种常驻土壤、促进植物生长的真菌,以及是否有可能利用声音来恢复受损的生态系统。"世界上超过 75% 的土壤已经退化,因此我们需要采取根本性措施来扭转这一趋势,并开始恢复生物多样性,"该研究的第一作者兼通讯作者杰克-罗宾逊(Jake Robinson)说。"这项研究让我们大吃一惊,与声波处于环境水平的对照组相比,一种常见的植物生长促进真菌的孢子细胞生物量的初始数量增加了近五倍"。研究人员首先将普通绿茶包和南非红茶包埋入地下,以促进真菌生物质(一种来自动植物的可再生有机材料)的生长。将茶包放置在隔音箱中,让它们暴露在 8 千赫的 70 分贝或 90 分贝单调声场中。实验开始时,所有茶包都看不到真菌生物量,但经过 14 天的声波刺激后,在 70 分贝和 90 分贝处理组中,绿茶包和红茶包以及每个茶包的内部和外部都明显出现了大量致密的真菌生物量。而在环境声低于 30 分贝的对照组茶包中,真菌生物量的可见度要低得多。研究人员随后在实验室环境中重复了这一实验,使用的培养皿中含有毛霉培养物。毛霉是一种有效的生物控制剂,能杀死多种土壤中的病原体,促进植物生长。20 个培养皿在 5 天内受到频率为 8 千赫的 80 分贝单调声波刺激;20 个培养皿没有受到任何刺激。到第五天,观察到声刺激对真菌生长、孢子生长和孢子密度有很大影响。在暴露于声音的培养皿中,孢子活动增加了约五倍。"我们实验室对恢复生态学的研究正在为改善原生植被的重新生长铺平道路,包括重新引入失去的物种,"该研究的共同作者马丁-布里德(Martin Breed)说。"我们对刺激土壤微生物活动潜力的研究利用了其他创新的可能性来帮助恢复自然。"重新植被后,土壤微生物需要几十年才能完全恢复。这项研究为加快这一过程提供了一种潜在的"生态声学"方法。还需要进一步研究声音对真菌生长的影响机制,并确定某些声音参数是否能针对特定的真菌种类。该研究的预印本可在bioRxiv 上查阅。 ... PC版: 手机版:

封面图片

研究人员发现抗生素耐药性的新因素 挑战传统观点

研究人员发现抗生素耐药性的新因素 挑战传统观点 这一发现挑战了抗生素耐药性主要是由于过度使用抗生素的传统观点,凸显了"隐性饥饿"在这一全球健康问题中的作用。这项研究强调,需要采取全面的解决方案来解决营养不良问题及其对抗生素耐药性的影响。这项研究的重点是了解维生素 A、B12、叶酸、铁和锌等关键微量营养素含量不足对消化道内多种细菌、病毒、真菌和其他微生物的影响。他们发现,这些缺陷导致小鼠肠道微生物群发生重大变化,最明显的是已知为机会性病原体的细菌和真菌数量急剧增加。重要的是,微量营养素缺乏的小鼠还表现出与抗生素耐药性有关的基因富集度更高。"在有关全球抗生素耐药性的讨论中,微量营养素缺乏一直是一个被忽视的因素,"UBC医学遗传学系、儿科系和不列颠哥伦比亚省儿童医院研究所博士后研究员Paula Littlejohn博士说。"这是一个重大发现,因为它表明营养缺乏会使肠道环境更有利于抗生素耐药性的产生,而这正是全球健康的一个主要问题。"作为一种防御机制,细菌天然拥有这些基因。某些情况下,如抗生素压力或营养压力,会导致这些机制的增加。这就构成了一种威胁,可能会使许多强效抗生素失效,导致未来普通感染变得致命。抗生素耐药性通常被归咎于抗生素的过度使用和滥用,但利特尔约翰博士和她在加拿大卑诗大学的同事们的研究表明,微量营养素缺乏的"隐性饥饿"是另一个重要因素。利特尔约翰博士说:"全球约有3.4亿五岁以下儿童患有多种微量营养素缺乏症,这不仅会影响他们的生长,还会显著改变他们的肠道微生物群。我们的研究结果尤其令人担忧,因为这些儿童经常因营养不良相关疾病而服用抗生素。具有讽刺意味的是,由于潜在的微量营养素缺乏,他们的肠道微生物组可能会产生抗生素耐药性。"这项研究为了解生命早期微量营养素缺乏的深远影响提供了重要见解。研究强调,需要采取综合战略来解决营养不良问题及其对健康的连锁反应。解决微量营养素缺乏问题不仅仅是为了克服营养不良,它也可能是对抗全球抗生素耐药性祸害的关键一步。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

解码癌症:研究人员揭示细胞是如何"叛变"的

解码癌症:研究人员揭示细胞是如何"叛变"的 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 约翰斯-霍普金斯大学医学院的科学家们绘制了人类乳腺和肺细胞中的一条分子途径,它可能导致基因组过度复制,而这正是癌细胞的一个特征。这些发现最近发表在《科学》杂志上,揭示了当一组分子和酶触发并调节所谓的"细胞周期"(用细胞的遗传物质制造新细胞的重复过程)时,会出现什么问题。研究人员认为,这些发现可用于开发中断细胞周期障碍的疗法,并有可能阻止癌症的生长。为了复制,细胞会遵循一个有序的程序,首先复制整个基因组,然后分离基因组副本,最后将复制的DNA平均分成两个"子"细胞。人类细胞的每对染色体有 23 对一半来自母亲,一半来自父亲,包括性染色体 X 和 Y即总共 46 对,但已知癌细胞会经历一个中间状态,即拥有双倍的数量92 条染色体。这是如何发生的是一个谜。约翰霍普金斯大学医学院分子生物学和遗传学副教授塞尔吉-雷戈特(Sergi Regot)博士说:"癌症领域科学家们的一个永恒问题是:癌细胞基因组是如何变得如此糟糕的?我们的研究对细胞周期的基础知识提出了挑战,让我们重新评估了关于细胞周期如何调节的想法"。细胞周期调控面临的挑战雷戈特说,复制基因组后受到压力的细胞会进入休眠或衰老阶段,并错误地冒着再次复制基因组的风险。一般来说,这些休眠细胞在被免疫系统"识别"为有问题的细胞后,最终会被清除。但有时,尤其是随着年龄的增长,免疫系统无法清除这些细胞。如果任由这些异常细胞在体内游荡,它们就会再次复制基因组,在下一次分裂时对染色体进行洗牌,从而引发癌症。为了确定细胞周期中出现问题的分子途径的细节,雷戈特和研究生研究助理康纳-麦肯尼(Connor McKenney)领导约翰-霍普金斯大学的研究小组,重点研究了乳腺导管和肺组织中的人类细胞。原因何在?这些细胞的分裂速度通常比体内其他细胞更快,从而增加了观察细胞周期的机会。观看这段视频,了解细胞在不分裂的情况下经历两次复制基因组的细胞周期阶段。细胞核中出现的亮点表明 DNA 正在复制的位置。资料来源:约翰-霍普金斯大学医学院塞尔吉-雷戈特实验室雷戈特的实验室擅长对单个细胞进行成像,因此特别适合发现极少数没有进入休眠期、继续复制基因组的细胞。在这项新研究中,研究小组仔细观察了数千张单细胞在细胞分裂过程中的图像。研究人员开发了发光生物传感器,用于标记细胞周期蛋白依赖性激酶(CDKs)。他们发现,各种 CDK 在细胞周期的不同时期激活。在细胞受到环境压力(如干扰蛋白质生产的药物、紫外线辐射或所谓的渗透压(细胞周围水压的突然变化))后,研究人员发现 CDK 4 和 CDK 6 的活性降低了。细胞周期破坏的研究结果五到六小时后,当细胞开始准备分裂时,CDK 2 也受到了抑制。此时,一种名为无丝分裂促进复合物(APC)的蛋白质复合物在细胞分裂前的阶段被激活,这一步骤被称为有丝分裂。Regot说:"在研究中的受压环境中,APC激活发生在有丝分裂之前,而通常人们只知道它在有丝分裂过程中激活。"当暴露在任何环境压力下时,约 90% 的乳腺细胞和肺细胞会离开细胞周期,进入安静状态。在他们的实验细胞中,并非所有细胞都安静了下来。研究小组发现,约有 5%-10%的乳腺细胞和肺细胞重返细胞周期,再次分裂染色体。通过另一系列实验,研究小组发现,所谓的应激活化蛋白激酶活性的增加与一小部分细胞脱离安静阶段并继续将基因组翻倍有关。雷戈特说,目前正在进行一些临床试验,测试DNA损伤剂与阻断CDK的药物。联合用药有可能促使一些癌细胞将基因组复制两次,产生异质性,最终产生抗药性。也许有药物可以阻止 APC 在有丝分裂前激活,从而防止癌细胞二次复制基因组,防止肿瘤阶段性进展。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员对3.175亿个海洋微生物的基因信息进行了分析和编目

研究人员对3.175亿个海洋微生物的基因信息进行了分析和编目 海洋微生物组是一个巨大的、高度多样化的基因库,具有复杂的新陈代谢能力。全球海洋基因组已被证明是科学的重要资源,尤其是在健康领域。例如,最初从水母中分离出来的绿色荧光蛋白现在已被广泛应用于医学成像诊断;生活在热液喷口周围的细菌是用于检测 SARS-CoV-2 的 PCR 测试中聚合酶的来源。但是,还有更多的基因有待发现。元基因组学是对直接取自环境或临床样本的遗传物质的研究,可以将基因功能与基因所属的生物体相匹配。分析数百万海洋微生物的基因构成是一项艰巨的任务。值得庆幸的是,人工智能的兴起和计算能力的提高使得大规模的元基因组分析成为可能。现在,阿卜杜拉国王科技大学(KAUST)的研究人员与西班牙国家研究委员会(CSIC)海洋科学研究所合作,对居住在海洋中的微生物的大量基因信息进行了分析和编目。研究人员利用 2021 年发明的 KAUST 元基因组分析平台 (KMAP) 分析了 2102 份海洋样本。大部分(78.5%)样本采集于上层海洋(0 至 200 米/656 英尺);7.2%采集于中层海洋(200 米/656 英尺至 1000 米/3281 英尺);10.2%采集于暗层海洋,深度低于 1000 米/3281 英尺。他们的DNA测序分析确定了3.175亿个独特的基因簇,并利用这些基因簇创建了KMAP全球海洋基因目录1.0,这是世界上最大的海洋微生物开源目录,可将微生物与基因功能、地理位置和栖息地类型相匹配。除了增进我们对海洋微生物群及其新陈代谢能力的了解外,所提供的信息还能帮助科学家追踪全球变暖、污染和整体海洋健康状况,并为探索新型基因在医药、能源、食品和其他行业的潜在用途提供了工具。该研究的通讯作者卡洛斯-杜阿尔特(Carlos Duarte)说:"科学家可以远程访问目录,研究不同的海洋生态系统是如何运作的,跟踪污染和全球变暖的影响,寻找生物技术应用,如新型抗生素或分解塑料的新方法。我们目前正在经历的人工智能加速发展很可能会在识别我们正在发布的海量目录中所包含的生物技术相关基因方面发挥重要作用"。有趣的是,在中深海区发现的独特基因簇中,真菌占了 50%以上,这凸显了真菌对微生物多样性的贡献。此外,95.9% 的样本来自远洋区,即远离海岸的开放自由水域,4.1% 的样本来自海底区,即洋底。底栖微生物在海洋生物地球化学循环中起着举足轻重的作用,生物圈中生物(生物)和非生物(非生物)之间的相互作用促进了碳、氮和硫等重要元素的更替。收集有关这些微生物的信息为了解海洋生态系统如何适应因自然和人为原因而不断变化的环境提供了宝贵的信息。"我们的分析强调了继续对海洋进行采样的必要性,重点是那些研究不足的区域,如深海和洋底,"该研究的主要作者Elisa Liaolo说。虽然 3.175 亿个基因簇听起来似乎很多,但研究人员知道,他们仍有很多工作要做。杜阿尔特说:"海洋基因目录1.0中记录的3.17亿个基因组虽然令人印象深刻,但很可能只是海洋生命漫长进化史所积累的庞大功能库的冰山一角。进一步的项目侧重于对海洋中未被充分研究的栖息地进行取样和大规模测序,其中包括研究中未包括的珊瑚和海草等生物,这些栖息地中已知有大量微生物物种,这些项目将可能揭示出比这个初始基因目录中包含的基因数量多得多的基因。"这项研究发表在《科学前沿》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人