在农田里"种植"火山岩可能会改变碳捕集的游戏规则

在农田里"种植"火山岩可能会改变碳捕集的游戏规则 这项研究首次对全球农田施用玄武岩可能产生的二氧化碳减少量进行了全球估算。该研究发表在《地球的未来》(Earth's Future)杂志上,该杂志是美国地质学家协会(AGU)针对地球及其居民的过去、现在和未来开展跨学科研究的期刊。增强岩石风化:有前途的方法这种类型的气候干预被称为强化岩石风化。它利用风化过程将二氧化碳自然封存在碳酸盐矿物中。这个想法很简单:以对人类有益的方式加速风化。如果与减排同时使用,它将有助于减缓气候变化的速度。研究报告的作者认为,与其他碳减排方法相比,这种方法可能更安全。领导这项研究的耶鲁大学气候科学家 S. Hun Baek 说:"与其他气候干预措施相比,加强岩石风化的风险较小。它还能带来一些关键性的好处,比如使枯竭的土壤恢复活力和抵御海洋酸化,这可能会使它更受社会欢迎"。这项新研究探讨了将碎玄武岩(一种熔岩冷却后形成的快速风化岩石)应用于世界各地农田的潜力,并强调了哪些地区可以最有效地分解岩石。根据发表在 AGU 期刊《地球的未来》上的最新研究,一种名为"强化岩石风化"的气候干预策略如果在全球范围内得到应用,将有助于实现 IPCC 关于减缓气候变化的一个关键目标。强化岩石风化可改善土壤健康、固碳并对抗海洋酸化。资料来源:AGU耶鲁大学的地球化学家诺亚-普兰纳夫斯基(Noah Planavsky)是这项研究的共同作者,他说:"这里蕴藏着巨大的潜力。虽然从基础科学的角度来看,我们还有很多东西要学,但还是有希望的,我们需要关注从市场和金融的角度我们能做些什么。"之前的一项研究使用了另一种计算二氧化碳去除量的方法来估算到 2050 年的碳减排量,但研究人员希望把目光投向国界之外和更远的未来。研究人员利用一种新的生物地球化学模型模拟了在全球耕地上应用碎玄武岩将如何吸收二氧化碳,测试了岩石风化增强对气候的敏感性,并确定了这种方法最有效的区域。研究结果和对未来的影响新模型模拟了从 2006 年到 2080 年,在两种排放情景下全球 1000 个农业基地岩石风化增强的情况。他们发现,在 75 年的研究期内,这些农田将吸收 640 亿吨二氧化碳。将这一数据推断到所有农田(即全球可能应用这一策略的总面积),在此期间可封存多达 2.17 亿吨的碳。"最新的IPCC 报告称,到 2100 年,除了大幅减排之外,我们还需要清除 100 到 1000 千兆吨的碳,以防止全球气温上升超过 1.5摄氏度,"Baek说:"扩大到全球耕地,我们发现的碳清除量估计值与实现这些气候目标所需的范围下限大致相当。"该研究强调,由于风化作用在炎热潮湿的环境中进展更快,因此在热带地区加强岩石风化作用比在高纬度地区更快见效。希望投资碳减排解决方案的农民和公司可以选择在热带地区应用玄武岩,从而实现成本和碳效益的双赢。该模型揭示了另一个令人鼓舞的结果:在气温升高的情况下,加强岩石风化的效果也很好,甚至更好一些。其他一些减少碳排放的方法,如依靠土壤有机碳储存的方法,随着气温的持续升高,其效果会越来越差。"增强岩石风化对气候变化的适应能力令人惊讶,"Baek 说。"我们的研究结果表明,它对气候变化相对不敏感,在中度和重度全球变暖的情况下,效果大致相同。这让我们对其作为长期战略的潜力充满信心。"Planavsky说,农民们已经在田地里施用了数百万吨石灰石(一种碳酸钙岩石,既可以是碳源,也可以是碳汇)来提供养分和控制土壤酸度,因此逐步改变岩石类型可能意味着顺利过渡到大规模实施强化岩石风化。增强岩石风化技术已在世界各地的农场小规模应用。Planavsky 说,下一步是努力实现"实际应用"。编译自:ScitechDaily相关文章:研究发现将石粉撒在农田上可吸收数十亿吨二氧化碳 ... PC版: 手机版:

相关推荐

封面图片

科学家通过在田间施用固碳用岩尘以提高作物产量并减少温室气体

科学家通过在田间施用固碳用岩尘以提高作物产量并减少温室气体 在自然状态下,岩石在环境中分解时会自然吸收大气中的二氧化碳。岩石碎裂成的块数越多,可用于固碳的总表面积就越大,因此可吸收的二氧化碳量也就越大。然而,大多数岩石需要很长时间才能自行碎裂成小块。此外,为了让所有这些碎块都能吸收二氧化碳,它们必须分布在一个大范围内,全部暴露在大气中。这就是强化岩石风化的作用所在。该工艺是用机械将岩石粉碎成粉尘状,然后将其撒在农田里。农民不一定要花费额外的时间来做这些工作,因为这些粉尘可以与已经施用在农田里的肥料或其他添加剂一起撒播。在 2020 年的研究中确定,如果在全球范围内实施强化岩石风化,每年可从大气中吸收多达 20 亿吨(约 22 亿吨)二氧化碳。这比全球航空和海运每年排放的二氧化碳总和还要多得多。这些岩石可以从采矿作业等渠道获得,农民可以得到经济激励,在他们的田地里使用这些粉尘。如果仅靠金钱还不够,那么提高产量的承诺可能会有所帮助。迪米塔-埃皮霍夫博士在一块试验田里视察大豆 Ilsa Kantola,加州大学洛杉矶分校这项新研究在伊利诺伊大学能源农场进行,为期四年,研究对象是轮流种植玉米和大豆的田块。这些田地中的一些地块未经处理,作为对照组,而其他地块则每年以每公顷 50 吨(45 吨)的比例施用玄武岩粉尘。最终发现,经过处理的地块产量比对照地块高出 12% 至 16%。这一结果主要是由于玄武岩提高了土壤的 pH 值,进而增强了植物吸收土壤中已有养分的能力。此外,玄武岩在土壤中分解时,自身也释放出磷、钾和钙等养分。此外,经过玄武岩处理的地块上的植物含有更多的微量和大量营养元素,从而提高了它们对人类和牲畜的营养价值。固碳效果也得到了证实现在人们相信,施用碎石粉每年每公顷可以清除大气中大约三到四吨的二氧化碳。首席科学家、谢菲尔德大学戴维-比尔林(David Beerling)教授说:"我们用来之不易的数据证明了增强风化法在现实世界中的碳清除潜力。这是了解这项技术在减缓气候变化的同时提高产量和改善土壤健康的巨大潜力方面迈出的一大步"。有关这项研究的论文最近发表在《美国国家科学院院刊》上。 ... PC版: 手机版:

封面图片

新研究发现海洋转换断层是重要的、被低估的碳汇

新研究发现海洋转换断层是重要的、被低估的碳汇 新的研究发现,海洋转换断层是重要的、以前被低估的二氧化碳汇对现有的地球地质碳循环概念提出了挑战。这项研究强调了自然地质排放在塑造地球气候历史中的关键作用,并强调了在应对当代气候变化的背景下深入了解这些过程的必要性。上图为改变的地幔岩石切片。图片来源:Solvin Zankl构造断裂是构造板块相互移动的地方,是地球上三大板块边界之一,全球长度约为 4.8 万公里,其他板块边界分别是全球洋中脊系统(约 6.5 万公里)和俯冲带(约 5.5 万公里)。几十年来,人们一直在研究洋中脊和俯冲带的碳循环。相比之下,科学家们对海洋转换断层中的二氧化碳关注相对较少,在相当长的一段时间里,转换断层被认为是"有点无聊"的地方,因为那里的岩浆活动很少。"克莱因说:"我们现在拼凑起来的结果是,沿着这些海洋转换断层暴露出来的地幔岩石可能是一个巨大的二氧化碳汇。"地幔的部分融化释放出二氧化碳,这些气体碳夹杂在热液中,与靠近海底的地幔发生反应,并在那里被捕获。首席科学家弗里德-克莱因(Frieder Klein)和"深海漫游者"号领航员艾伦-斯考特在探索水下碳酸盐平台。图片来源:Novus Select《美国国家科学院院刊》(PNAS)上发表的一项新的期刊研究报告的第一作者克莱因说:"这是地质碳循环中以前不为人知的一部分。由于在以前对全球二氧化碳地质通量的估算中没有考虑到转换断层,因此岩浆二氧化碳向改变了的洋幔和海水的质量转移可能比以前想象的要大。"地质排放与气候克莱因说:"与人为二氧化碳(或人类驱动的二氧化碳)相比,转换断层排放的二氧化碳量可以忽略不计。然而,从地质时间尺度来看,在人类排放如此多的二氧化碳之前,地球地幔(包括转换断层)的地质排放是地球气候的主要驱动力。"正如论文所述,据估计,全球人为二氧化碳排放量 约为每年 36 千兆吨(Gt),这使大气和水圈的平均地质排放量(每年 0.26 千兆吨)相形见绌。然而,在地质时间尺度上,来自地球地幔的二氧化碳排放量在调节地球气候和宜居性以及包括海洋、大气层和岩石圈在内的地表储层中的碳浓度方面发挥了关键作用,当然,这是在人类活动燃烧化石燃料之前。通过地质研究了解气候变化"为了充分了解现代人类造成的气候变化,我们需要了解地球深层过去的自然气候波动,这与地球自然碳循环的扰动息息相关。我们的工作提供了有关地球地幔和海洋/大气系统之间碳长时间尺度通量的见解,"该研究的合著者、佛蒙特州本宁顿学院教师蒂姆-施罗德(Tim Schroeder)说。"数百万年来,这种碳通量的巨大变化导致地球气候变得比现在温暖或寒冷得多。"为了更好地了解地幔和海洋之间的碳循环,研究人员分析了圣保罗转换断层中"地幔橄榄岩矿物碳化过程中"皂石和其他含镁集合体的形成。认为该断层是富含二氧化碳的热液流体的通道,而橄榄岩的碳化则可能成为排放二氧化碳的巨大的汇。研究人员在论文中认为,"低度熔化会产生富含不相容元素、挥发物,特别是二氧化碳的熔体,而在大洋转换断层处存在橄榄岩,这两种因素结合在一起,为广泛的矿物碳化创造了有利条件"。这些岩石是在 2017 年对该地区进行巡航时使用载人车辆采集的。找到并分析这些岩石"简直是梦想成真"。克莱因说:"我们在12年前就预测到了碳酸盐改变的洋幔岩的存在,但我们在任何地方都找不到它们。我们曾前往该群岛探索低温热液活动,但都以失败告终。令人难以置信的是,我们竟然能在一个转换断层中找到这些岩石,因为我们是在寻找其他东西时偶然发现它们的。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家设计的新方案可以让碳捕集所需的能量将来自太阳

科学家设计的新方案可以让碳捕集所需的能量将来自太阳 在新工艺中,空气通过一种液体来捕捉二氧化碳。如果用光照射液体,温室气体就会再次释放并被收集起来。图片来源:苏黎世联邦理工学院因此,苏黎世联邦理工学院的研究人员正在开发一种利用光的新方法。通过这种方法,未来碳捕集所需的能量将来自太阳。在电化学能源系统教授玛丽亚-卢卡茨卡娅的领导下,科学家们正在利用这样一个事实:在酸性水液中,二氧化碳以二氧化碳的形式存在,但在碱性水液中,二氧化碳会反应生成碳酸盐,即碳酸盐。这种化学反应是可逆的。液体的酸性决定了它是含有二氧化碳还是碳酸盐。为了影响液体的酸性,研究人员在液体中加入了能对光产生反应的分子(称为光酸)。如果用光照射这种液体,这些分子就会使其呈酸性。而在黑暗中,它们又会恢复到原来的状态,使液体呈碱性。这就是 ETH 研究人员的方法的详细工作原理:研究人员在黑暗中将空气通过含有光酸的液体,从而从空气中分离出二氧化碳。由于这种液体呈碱性,二氧化碳会发生反应并形成碳酸盐。一旦液体中的盐分积累到一定程度,研究人员就用光照射液体。这使得液体呈酸性,碳酸盐转化为二氧化碳。二氧化碳从液体中冒出,就像在可乐瓶中一样,可以收集到储气罐中。当液体中几乎不剩任何二氧化碳时,研究人员关闭光源,循环重新开始,液体就可以捕获二氧化碳了。"然而,在实践中出现了一个问题:所使用的光酸在水中并不稳定。"卢卡茨卡娅研究小组的博士生、本研究的第一作者安娜-德弗里斯(Anna de Vries)说:"在最早的实验过程中,我们发现分子在一天后就会分解。"于是,卢卡茨卡娅、德弗里斯和他们的同事分析了分子的衰变。他们不是在水中,而是在水和有机溶剂的混合物中进行反应,从而解决了这个问题。科学家们通过实验室实验确定了两种液体的最佳比例,并通过巴黎索邦大学研究人员的模型计算解释了他们的发现。首先,这种混合物能让光酸分子在溶液中保持稳定近一个月。另一方面,它确保了光可以根据需要在酸性和碱性溶液之间来回切换。如果研究人员使用的有机溶剂不含水,反应将是不可逆的。其他碳捕获过程也是循环往复的。一种成熟的方法是使用过滤器在环境温度下收集二氧化碳分子。为了随后从过滤器中清除二氧化碳,必须将过滤器加热到约 100摄氏度。然而,加热和冷却都是高能耗的:它们占过滤器方法所需能源的大部分。Lukatskaya说:"相比之下,我们的工艺不需要任何加热或冷却,因此所需的能源要少得多。不仅如此,ETH 研究人员的新方法还可能仅靠阳光就能工作。我们系统的另一个有趣之处在于,我们可以在几秒钟内从碱性变为酸性,并在几分钟内恢复到碱性。这让我们可以比温度驱动系统更快地在碳捕获和碳释放之间切换。"通过这项研究,研究人员表明,光酸可以在实验室中用于捕获二氧化碳。下一步,他们将进一步提高光酸分子的稳定性,使其走向市场。他们还需要研究整个过程的参数,以进一步优化该过程。参考文献:《溶解调谐光酸作为二氧化碳捕获和释放的稳定光驱动 pH 开关》,作者:Anna de Vries、Kateryna Goloviznina、Manuel Reiter、Mathieu Salanne 和 Maria R. Lukatskaya,2023 年 12 月 20 日,《材料化学》。DOI: 10.1021/acs.chemmater.3c02435编译自/scitechdaily ... PC版: 手机版:

封面图片

欧盟委员会周三公布了他们迄今为止最富雄心的应对气候变化计划。而在南美,亚马孙盆地的大片区域已从吸收转为排放二氧化碳。

欧盟委员会周三公布了他们迄今为止最富雄心的应对气候变化计划。而在南美,亚马孙盆地的大片区域已从吸收转为排放二氧化碳。 欧盟计划将提高用于取暖、运输和制造的碳排放成本,对之前没有征税的高碳航空和船运燃料征税,并向边境进口商收取水泥、钢铁和铝等产品在国外制造过程中排放的碳的费用。欧盟成员国还被要求种植森林和草原,以阻止二氧化碳进入大气。计划旨在将本十年的绿色目标转化为具体行动,并为其他大型经济体树立榜样。负责欧盟气候政策的弗兰斯·蒂默曼斯在发布会上承认这很难,但表示这是一种义务。 在南美,研究人员报告称,根据过去十年收集的数百个高空空气样本,亚马孙东南部已经从过去吸收和储存二氧化碳的角色转变为二氧化碳的排放来源。研究人员指出,“森林砍伐和退化都减少了亚马孙地区的固碳能力”。此外,气候变化本身导致了旱季温度的增高。而在亚马孙东部,二氧化碳排放量在旱季要远远超过其吸收量。 (路透社,法新社)

封面图片

欧盟开始制定从大气中清除二氧化碳的规则

欧盟开始制定从大气中清除二氧化碳的规则 净零排放意味着欧盟将通过利用植物吸收二氧化碳的自然能力,或通过建立从空气或海水中过滤二氧化碳的技术,来捕捉其未能阻止的剩余二氧化碳排放。净零战略存在固有风险,这也是为什么像今天制定的这些规则如此重要的原因。它们将规定什么算作碳清除,希望能筛选出那些不能有意义地应对气候变化的低劣项目。宽松的规则或者根本没有规则可能会给公司提供继续污染的途径,同时误导性地承诺以后会减少这些排放。如果这些承诺落空,或者它们所依赖的技术失败,那么就会留下所有的污染,而这些污染本来是可以通过选择清洁能源而不是碳清除来避免的。该框架"表明了欧盟对'正确进行碳清除'的承诺",Climeworks 公司的首席气候政策官 Christoph Beuttler 说。他在一份新闻稿中说:"我们鼓励其他国家和地区效仿欧盟的做法,对碳清除量进行严格评估。"迄今为止,该行业的相关行动都是以自律的方式进行。例如,Climeworks 公司去年宣布,其客户微软、Stripe 和 Shopify 已成为世界上首批付费过滤空气中二氧化碳排放、将这些排放物储存在地下并由第三方验证该服务的公司,审计公司 DNV 与 Climeworks 合作,共同制定标准并对碳清除进行认证。在另一项行动中,Stripe、Alphabet、Meta、Shopify 和麦肯锡于 2022 年发起了一项名为"前沿"(Frontier)的倡议,为有意购买碳减排信用额度的公司审查碳减排供应商。碳信用额市场已经有了一段不光彩的历史。在碳减排成为潮流之前,很多品牌购买了与林业项目相关的碳抵消信用额度。当时的想法是,公司可以通过付费保护自然吸收二氧化碳的森林来抵消部分污染。一个信用额度相当于避免或螯合了一公吨的二氧化碳污染。然而,碳抵消市场充斥着质量低劣的信用额度,这些信用额度并不代表现实世界中二氧化碳排放量的减少。为了避免新兴碳清除技术的类似命运,欧盟的新认证为四种不同类型的碳清除设定了参数。其中包括因二氧化碳被封存(通常在地下)"几个世纪"而被认为是永久性的碳清除,以及"临时性"碳封存(在植物或土壤中至少持续 5 年,在木材等产品中至少持续 35 年)。它既评估了工业碳清除策略(如 Climeworks 所做的),也评估了基于自然的策略,如恢复森林和其他栖息地,或使土壤能够容纳更多二氧化碳的耕作方法。该框架还纳入了欧盟委员会在 2022 年提出的措施,包括要求碳清除是可量化和长期的。此外,项目应能"额外"减少二氧化碳排放量,也就是说,如果没有干预措施,这些碳就不会被封存。项目还需避免对环境造成其他负面影响。值得注意的是,欧盟的新认证计划不会将所谓的提高石油采收率(EOR)作为永久性的碳清除战略。在强化采油法中,化石燃料公司向地下喷射二氧化碳,以逼出难以开采的石油储量。西方石油公司(Occidental Petroleum)正在得克萨斯州开发大型碳清除项目,该公司利用 EOR销售其所谓的"净零石油"。一些环保组织警告说,欧盟的建议仍然过于宽松。他们担心该框架会激励临时碳储存,并让公司和国家都能申报二氧化碳清除量,他们说这可能会导致重复计算。非营利组织"碳市场观察"(Carbon Market Watch)的碳清除政策负责人 Wijnand Stoefs 在一份声明中说,这项协议"问题重重",即使是清除量必须补充而不是替代减排量这一基本原则也被违反了。今天达成的临时协议仍需欧洲理事会和欧洲议会正式通过。如果获得通过,碳清除公司将自愿参与认证过程。但只有经过认证的项目才能计入一个国家在实现欧盟气候目标方面的进展。本月早些时候,欧盟委员会发布了一份捕集二氧化碳排放的战略文件,同时还发布了一项计划,即到 2040 年将欧盟的温室气体排放量减少90%。该战略设想,到 2040 年,欧盟每年有能力储存 2.8 亿吨捕集的二氧化碳,大约相当于700 多座燃气发电厂的年排放量。 ... PC版: 手机版:

封面图片

中国将建立电力二氧化碳排放因子常态化发布机制

中国将建立电力二氧化碳排放因子常态化发布机制 中国生态环境部、国家统计局发布公告称,将建立电力二氧化碳排放因子常态化发布机制,并拟于2024年尽早发布2022年电力二氧化碳排放因子。 根据《人民日报》星期二(4月16日)报道,中国生态环境部、国家统计局发布《关于发布2021年电力二氧化碳排放因子的公告》。 此次发布的2021年电力二氧化碳排放因子,分为三种口径,包括2021年全国、区域及省级电力平均二氧化碳排放因子,2021年全国电力平均二氧化碳排放因子(不包括市场化交易的非化石能源电量)和2021年全国化石能源电力二氧化碳排放因子。 据介绍,电力二氧化碳排放因子是核算电力消费二氧化碳排放量的重要基础参数。本次发布的电力二氧化碳排放因子可供不同主体核算电力消费的二氧化碳排放量时参考使用,是落实《关于加快建立统一规范的碳排放统计核算体系实施方案》中“统筹推进排放因子测算”要求的重要举措,为碳排放核算提供基础数据支撑。 公告说,下一步,生态环境部、国家统计局将建立电力二氧化碳排放因子常态化发布机制。根据基础数据更新情况,拟于2024年尽早发布2022年电力二氧化碳排放因子。 2024年4月16日 8:16 PM

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人