韦伯太空望远镜观测到紫外线"风"侵蚀猎户座星云中的原行星盘

韦伯太空望远镜观测到紫外线"风"侵蚀猎户座星云中的原行星盘 该研究报告首次直接观测到了远紫外线(FUV)驱动的原行星盘光蒸发的证据。这些发现利用了詹姆斯-韦伯太空望远镜(JWST)的观测数据,为气态巨行星(包括太阳系内的气态巨行星)形成的制约因素提供了新的见解。洞察气态巨行星的形成年轻的低质量恒星周围通常环绕着寿命相对较短的尘埃和气体原行星盘,它们为行星的形成提供了原材料。因此,气态巨行星的形成受到了从原行星盘中去除质量的过程的限制,例如光蒸发。当原行星盘的上层被 X 射线或紫外线质子加热时,气体温度升高,导致气体从系统中逸出,这就是光蒸发。由于大多数低质量恒星都是在同时包含大质量恒星的星团中形成的,因此原行星盘预计会暴露在外部辐射中,并经历紫外线驱动的光汽化。詹姆斯-韦伯太空望远镜的 NIRCam 仪器看到的猎户座星云内部区域。资料来源:NASA、ESA、CSA,数据缩减和分析: PDRs4All ERS 小组;图形处理 S. Fuenmayor来自 JWST 和 ALMA 的观测证据理论模型预测远紫外辐射会产生光解离区(PDRs)在这些区域中,附近大质量恒星投射的紫外线光子会对原行星盘表面的气体化学反应产生强烈影响。然而,对这些过程的直接观测一直难以实现。Olivier Berné及其同事利用JWST和阿塔卡马大型毫米波阵列(ALMA)分别进行的近红外和亚毫米波测量,报告了对猎户座星云内部一个被FUV辐照的原行星盘d203-506的观测结果。通过对PDR内部探测到的发射线的运动学和激发进行建模,研究人员发现由于FUV驱动的加热和电离,d203-506的质量正在高速流失。研究结果表明,d203-506的质量损失速度表明,气体可能会在一百万年内从圆盘中移除,从而抑制气态巨行星在该系统内形成的能力。Berné等人写道:"对太阳系的动力学和成分研究表明,太阳系是在一个包含一颗或多颗大质量恒星的恒星簇中形成的,因此它可能受到了FUV辐射的影响。"编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

韦伯太空望远镜参与研究了猎户座星云中的一个原行星盘

韦伯太空望远镜参与研究了猎户座星云中的一个原行星盘 太阳系等行星系统是如何形成的?为了弄清这个问题,法国国家科学研究中心(CNRS)的科学家们参加了一个国际研究小组[1],利用詹姆斯-韦伯太空望远镜[2]研究了一个恒星育儿室猎户座星云,通过观测一个名为d203-506的原行星盘,他们发现了大质量恒星在这种新生行星系统的形成过程中所起的关键作用[3]。猎户座星云的哈勃图像,以及詹姆斯-韦伯太空望远镜(JWST)拍摄的原行星盘 d203-506 的放大图像。图片来源:NASA/STSCI/Rice Univ./C.O'Dell et al / O. Berné, I. Schrotter, PDRs4All这些恒星的质量大约是太阳的 10 倍,更重要的是,它们的光亮度是太阳的 10 万倍,在这些系统附近形成的任何行星都会受到非常强烈的紫外线辐射。根据行星系中心恒星的质量,这种辐射既可以帮助行星的形成,也可以通过分散行星的物质来阻止它们的形成。在猎户座星云中,科学家们发现,由于大质量恒星的强烈辐照,类似木星的行星将无法在行星系 d203-506 中形成。这篇论文登上了2024年3月1日《科学》杂志的头版头条,以前所未有的精确度展示了大质量恒星在行星系统形成过程中所起的决定性作用,并为此类系统如何形成开辟了新的视角。说明:参与这项研究的主要法国实验室有天体物理与行星学研究所(法国国家空间研究中心/法国国家科学研究中心/图卢兹保罗萨巴蒂埃大学)、天体物理空间研究所(法国国家科学研究中心/巴黎萨克雷大学)、天体物理学和大气物理学光线和材料研究实验室(法国国家科学研究中心/巴黎瑟吉大学/巴黎-PSL观测站/索邦大学),以及奥赛分子科学研究所(法国国家科学研究中心/巴黎萨克雷大学)。该研究是国际" PDRs4All "项目的一部分。詹姆斯-韦伯红外太空望远镜可以穿透尘埃云,从而以无与伦比的清晰度揭示遥远的天体,如距离地球 1400 光年的猎户座星云。历史不到一百万年的系统。编译自:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜在极端恒星环境中发现生命的前身:水和简单的有机分子

韦伯望远镜在极端恒星环境中发现生命的前身:水和简单的有机分子 这些观测结果在同类观测中尚属首次在JWST之前,这种详细的观测是不可能实现的。这对于类地行星和宇宙中的生命来说都是一个好消息:可以形成这类行星的环境种类繁多。这些结果现已发表在《天体物理学杂志通讯》(Astrophysical Journal Letters)上。一颗年轻的太阳型恒星周围的气体和尘埃盘中发现了水和含碳分子,这颗恒星位于银河系中最极端的环境之一。这种圆盘是行星围绕新生恒星形成的地方。由马克斯-普朗克天文学研究所(MPIA)的玛丽亚-C-拉米雷斯-坦努斯(María C. Ramírez-Tannus)领导的天文学家小组利用詹姆斯-韦伯太空望远镜窥探了这个圆盘的内部区域。这个被天文学家称为"XUE-1"的圆盘暴露在附近高温大质量恒星的强烈紫外线辐射下。然而,即使在这样恶劣的环境中,观测结果还是检测到了水和简单的有机分子。拉米雷斯-坦努斯说:"这一结果出乎意料,令人振奋!它表明,即使在银河系最恶劣的环境中,也存在着形成类地行星的有利条件和生命的要素。大质量恒星形成区的艺术家印象图,前景为行星形成盘 XUE-1。该区域被大质量恒星发出的紫外线所笼罩,左上角可见其中一颗恒星。圆盘附近的结构代表了研究人员在新观测中发现的分子和尘埃。图片来源:© Maria Cristina Fortuna ()大规模恒星形成区的空前细节新的观测结果在同类研究中尚属首次。以前对行星形成盘的详细观测仅限于附近没有大质量恒星的恒星形成区。大质量恒星形成区则完全不同:在那里,无数恒星在大致相同的时间形成,包括一些罕见但威力巨大的超大质量恒星。在宇宙恒星形成的"黄金时代",即大约 100 亿年前,大部分恒星都是在这种大质量星团中形成的。总体而言,宇宙中一半以上的恒星包括我们的太阳都诞生于大质量恒星形成区,同时还有它们的行星。然而,人们对这种恶劣环境对星盘内部区域的影响却一无所知,而陆地行星有望在这些区域形成。大质量恒星非常明亮,会发出大量高能紫外线辐射。它们的存在会对其附近造成相当大的干扰。这种干扰是否会经常干扰类似太阳的恒星周围像地球这样的行星的形成,这还是一个未决问题这将使类似地球的行星在这种大质量恒星簇中处于边缘地位,并非不可能形成,但非常罕见。有一些似是而非的论点认为情况可能如此。例如,来自大质量恒星的紫外线辐射分散了外盘部分的气体,从而抑制了尘埃粒子的生长和向内漂移,而尘埃粒子正是类地行星(以及木星或土星等巨型行星的核心)的组成部分。这很可能不利于类地行星的形成。迄今为止,观测结果都无助于回答这个问题。在当今宇宙中,大质量恒星形成区非常罕见,即使是最近的恒星形成区也离得很远。直到最近,还没有办法观测到类似太阳恒星周围的小型星盘的任何细节。为数不多的行星形成盘距离很近,可以进行详细观测,但它们都位于安静的环境中,没有来自大质量恒星的强烈紫外线辐射,因此对回答这个问题毫无用处。XUE 合作项目("极端紫外线环境"的缩写)的徽标显示的是 Muisca 文化中的太阳神 Xué。穆伊斯卡人是生活在拉米雷斯-坦努斯的家乡哥伦比亚中部的原住民。徽标取材于波哥大附近发现的岩石艺术。图片来源:© XUE 合作利用 JWST 探测内盘这种情况随着 JWST 的出现而改变。当这台望远镜可以用于科学观测时,拉米雷斯-坦努斯和 XUE(极紫外环境)合作小组成功申请观测 NGC 6357。这里距离地球 5500 光年,是距离最近的大质量恒星形成区之一。它也是最有希望回答内盘问题的观测目标:NGC 6357包含十多颗高亮度大质量恒星,确保该区域可见的一些行星形成盘在其存在的大部分时间里都暴露在强烈的紫外线辐射下。多样性是一个重要因素:该区域包含各种类型的盘,其中一些受到的辐射较多,另一些则较少。来自斯德哥尔摩大学的阿尔扬-比克(Arjan Bik)说:"如果强烈辐射阻碍了原行星盘内部区域行星形成的条件,那么NGC 6357就是我们应该看到这种影响的地方。"天文学家们进行的观测记录了光谱:对光线进行彩虹般的分解,从而估算出观测区域中存在的特定分子。令他们惊讶的是,拉米雷斯-坦努斯和她的同事们发现,就关键分子的存在(和性质)而言,NGC 6357 中至少有一个内盘(即 XUE-1)与低质量恒星形成区中的同类物质并无本质区别。韦伯天文台是未来十年中最重要的天文台,为全世界成千上万的天文学家服务。它研究我们宇宙历史的每一个阶段。资料来源:美国国家航空航天局严酷环境中的硅酸盐、水和其他分子拉米雷斯-坦努斯说:"我们在XUE-1的最内层区域发现了大量的水、一氧化碳、二氧化碳、氰化氢和乙炔。这为了解所产生的陆地行星最初大气层的可能组成提供了宝贵的线索"。研究人员还发现了硅酸盐尘埃,其数量与低质量恒星形成区域中的硅酸盐尘埃数量相似。这是在这种极端条件下首次检测到此类分子。对于类地行星和宇宙生命来说,这些观测结果是个好消息:显然,位于一些最恶劣恒星形成环境中的类太阳恒星周围的原行星盘内部区域,与低质量恒星一样能够形成类似地球的岩石行星。它们甚至提供了丰富的水,这是我们所知的生命的必要成分。至于这是否意味着在这种环境中诞生了大量的类地行星,研究人员并不能通过观察单个圆盘来判断。XUE合作小组正在进一步开展观测:JWST将对NGC 6357不同部分的另外14个圆盘进行勘测,这将大大有助于解决这一重要问题。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯太空望远镜揭示塑造行星系统的无形力量

韦伯太空望远镜揭示塑造行星系统的无形力量 詹姆斯-韦伯太空望远镜的 NIRCam 仪器看到的猎户座星云内部区域。资料来源:NASA、ESA、CSA、数据缩减和分析:PDRs4All ERS 小组;图形处理 S. Fuenmayor通过观测一个名为d203-506的原行星盘,他们发现了大质量恒星在形成不到一百万年的行星系统过程中所起的关键作用。这项研究由图卢兹国家科学研究中心(CNRS)的奥利维尔-贝内(Olivier Berné)博士领导,以《在原行星盘中观测到的远紫外光驱动的光蒸发流》为题发表在《科学》杂志上。这些恒星的质量大约是太阳的十倍,更重要的是,它们的光亮度是太阳的十万倍,在这些系统附近形成的任何行星都会受到非常强烈的紫外线辐射。根据行星系中心恒星的质量,这种辐射既可以帮助行星的形成,也可以通过分散行星的物质来阻止它们的形成。在猎户座星云中,科学家们发现,由于大质量恒星的强烈辐照,类似木星的行星将无法在行星系 d203-506 中形成。该团队由来自仪器、数据缩减和建模等领域的众多专家组成。JWST 的数据与阿塔卡马大型毫米波阵列(ALMA)收集的数据相结合,以确定气体中的物理条件。计算得出的星盘质量损失速度意味着,整个星盘的蒸发速度将快于一颗巨行星的形成速度。科隆大学天体物理研究所的 Yoko Okada 博士说:"团队多年来做出了许多贡献,包括制定观测计划和评估数据,这些成果的取得令人欣喜,标志着我们在了解行星系统的形成方面迈出了重要一步。"猎户座星云中的 JWST 数据非常丰富,让科学家们忙于在恒星和行星形成以及星际介质演化领域进行各种详细分析。编译自:ScitechDaily ... PC版: 手机版:

封面图片

窥探宇宙尘埃:詹姆斯-韦伯望远镜正在寻找新生行星

窥探宇宙尘埃:詹姆斯-韦伯望远镜正在寻找新生行星 这幅艺术家的作品展示了一颗气态巨行星的形成过程,它嵌在一颗年轻恒星周围尘埃环中的尘埃和气体盘中。由密歇根大学天文学家加布里埃尔-库格诺(Gabriele Cugno)领导的密歇根大学的一项研究将詹姆斯-韦伯太空望远镜瞄准了一颗名为 SAO 206462 的原恒星周围的原行星盘,希望能发现一颗正在形成中的气态巨行星。密歇根大学、亚利桑那大学和维多利亚大学领导的三项研究将JWST的图像与哈勃太空望远镜和智利阿塔卡马大型毫米波阵列(ALMA)之前的观测结果相结合。在辅助观测的基础上,研究小组利用 JWST 观测了原行星盘 HL Tau、SAO 206462 和 MWC 758,希望能探测到任何可能正在形成的行星。在发表于《天文杂志》(The Astronomical Journal)的这些论文中,研究人员拼凑出了行星形成盘与原行星盘中心年轻恒星周围的气体和尘埃包层之间以前从未见过的相互作用。由麻省理工大学天文学家加布里埃尔-库格诺(Gabriele Cugno)领导的麻省理工大学研究将JWST瞄准了一颗名为SAO 206462的原恒星周围的盘。在那里,研究人员可能发现了一颗正在原行星盘中形成的候选行星但这并不是他们期望发现的行星。"一些模拟结果表明,这颗行星应该在圆盘内,质量大、体积大、温度高、亮度高。但我们没有发现它。这意味着,要么这颗行星比我们想象的要冷得多,要么它可能被某些物质遮挡住了,使我们无法看到它,"库格诺说,他也是这三篇论文的共同作者。"我们发现的是一颗不同的候选行星,但我们无法百分之百确定它是一颗行星,还是一颗模糊的背景恒星或星系污染了我们的图像。未来的观测将帮助我们准确了解我们所看到的是什么"。天文学家过去曾对这个圆盘进行过观测,特别是哈勃太空望远镜、斯巴鲁望远镜、甚大望远镜和 ALMA。这些观测结果表明,圆盘由两个强螺旋组成,很可能是由一颗正在形成的行星发射的。马萨诸塞大学的研究小组预计发现的这颗行星属于气态巨行星,主要由氢和氦组成,类似于太阳系中的木星。两只旋臂从SAO 206462周围富含气体的盘中伸出,SAO 206462是一颗位于豺狼座的年轻恒星。这幅由斯巴鲁望远镜及其 HiCIAO 仪器获取的图像首次显示了环星盘中的螺旋臂。图像追踪了恒星发出并散射在星盘表面的光线。星盘本身的直径约为140亿英里,约为太阳系中冥王星轨道的两倍。图片来源:NAOJ/Subaru库格诺说:"问题是,我们要探测的东西比恒星暗淡几十万倍,甚至几百万倍。这就像试图探测灯塔旁边的一个小灯泡一样。"为了更近距离地观察这个圆盘,研究小组使用了 JWST 上的一个名为 NIRCam 的仪器。NIRCam可探测红外光,天文学家利用该仪器采用了一种称为角差分成像的技术。这种技术既可以用来探测行星的热辐射就像研究小组探测候选行星那样,也可以用来探测与落到行星上并高速撞击行星表面的物质有关的特定发射线。库格诺说:"当物质落到行星上时,会在表面产生震动,并发出特定波长的发射线。我们使用一组窄带滤光片来探测这种吸积。以前曾在地面上用光学波长进行过这种探测,但这是第一次用 JWST 在红外波段进行探测。"维多利亚大学的这篇论文由天文学学生卡姆林-穆林(Camryn Mullin)领导,描述了年轻恒星HL Tau周围的圆盘图像。"HL Tau 是我们探测器中最年轻的系统,周围仍有密集的尘埃和气体流入星盘,"三项研究的共同作者穆林说:"我们对利用 JWST 可以看到周围物质的详细程度感到惊讶,但不幸的是,这掩盖了潜在行星的任何信号。"众所周知,HL Tau 的星盘上有几个太阳系规模的星环和缝隙,可能孕育着行星。"虽然有大量证据表明行星正在形成,但HL Tau太年轻了,有太多的尘埃介入,无法直接看到行星,"寻找正在形成的行星的观测活动的主要研究者、亚利桑那大学斯图尔特天文台的天文学家Jarron Leisenring说。"我们已经开始观测其他有已知行星的年轻系统,以帮助形成更完整的图像。"然而,令研究小组惊讶的是,JWST 揭示了一个不同特征的意想不到的细节:原恒星包膜,据莱森林称,它本质上是年轻恒星周围刚刚开始凝聚的尘埃和气体的密集流入。在引力的作用下,星际介质中的物质向内坠落到恒星和星盘上,成为行星及其前身的原材料。由美国宇航局哈勃/萨根研究员凯文-瓦格纳(Kevin Wagner)领导的亚利桑那大学斯图尔特天文台的研究对MWC 758的原行星盘进行了检查。与 SAO 206462 类似,由亚利桑那大学领导的研究小组之前的观测也发现了在盘中形成的螺旋臂,暗示着有一颗大质量行星围绕着它的主恒星运行。研究人员说,虽然在最近的观测中没有在圆盘中探测到新的行星,但这种灵敏度是开创性的,因为它使他们能够对可疑行星施加最严格的限制。首先,这些结果排除了在 MWC 758 的外部区域存在其他行星的可能性,这与一颗巨行星驱动旋臂的情况是一致的。这三项研究的合著者瓦格纳说:"在所有三个系统中都没有探测到行星,这告诉我们,造成缝隙和旋臂的行星要么离它们的宿主恒星太近,要么太暗,无法用JWST观测到。如果后者属实,那就告诉我们它们的质量相对较低、温度较低、被尘埃笼罩,或者是三者的某种组合MWC 758很可能就是这种情况"。捕捉正在形成中的行星非常重要,因为天文学家不仅可以收集到关于行星形成过程的信息,还可以收集到关于化学元素如何在整个行星系统中分布的信息。"像太阳这样的恒星中,只有大约15%拥有像木星这样的行星。了解它们是如何形成和演化的,并完善我们的理论确实非常重要,"三项研究的共同作者、麻省理工大学天文学家迈克尔-迈耶(Michael Meyer)说。"一些天文学家认为,这些气态巨行星调节着向在星盘内部形成的岩质行星输送水的过程。迈耶说,了解气态巨行星是如何塑造这些星盘的,将有助于天文学家最终了解原行星盘的性质和演化过程,这些原行星盘后来产生了岩质类地行星。库格诺说:"基本上,在我们以足够高的分辨率和灵敏度观测到的每一个星盘中,我们都能看到大型结构,如间隙、星环,在SAO 206462的情况下,还有螺旋状结构。这些结构中的大部分(如果不是全部的话)都可以用形成中的行星与磁盘物质相互作用来解释,但也存在其他不涉及巨行星存在的解释。"如果我们最终能够看到这些行星,我们就能将其中的一些结构与正在形成的伴星联系起来,并将形成过程与其他系统在更晚阶段的特性联系起来。我们最终可以把这些点联系起来,了解行星和行星系统作为一个整体是如何演化的"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜揭示蛇夫座星云中的壮观恒星喷流

韦伯望远镜揭示蛇夫座星云中的壮观恒星喷流 在美国宇航局詹姆斯-韦伯太空望远镜上的近红外相机(NIRCam)拍摄的这幅蛇夫座星云图像中,天文学家发现在一个小区域内(左上角)有一组排列整齐的原恒星外流。在韦伯望远镜的图像中,这些喷流呈现出红色的明亮块状条纹,这是喷流撞击周围气体和尘埃产生的冲击波。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)在星云的一个区域,韦伯已经将以前看似模糊的球状物解析成了清晰的原恒星外流。更让研究人员惊讶的是,这些外流被看成是排列整齐的,这表明我们在这一区域的历史上捕捉到了一个独特的时刻,并提供了恒星诞生的基本信息。在韦伯太空望远镜的新图像中首次进行了同类检测美国国家航空航天局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)首次捕捉到了天文学家一直希望直接拍摄的现象。在这幅令人惊叹的蛇夫座星云图像中,这一发现位于这个年轻的、附近恒星形成区的北部区域(见左上方)。天文学家发现了一组有趣的原恒星外流,它们是新生恒星喷出的气体射流与附近的气体和尘埃高速碰撞后形成的。通常情况下,这些天体在一个区域内会有不同的方向。然而,在这里,它们朝着同一个方向倾斜,程度相同,就像暴风雨中倾泻而下的雨夹雪。韦伯望远镜精湛的空间分辨率和近红外波长的灵敏度使得发现这些排列整齐的天体成为可能,这为了解恒星是如何诞生的基本原理提供了信息。位于加利福尼亚州帕萨迪纳市的美国宇航局喷气推进实验室的首席研究员克劳斯-庞托皮丹(Klaus Pontoppidan)说:"天文学家长期以来一直认为,当云层坍缩形成恒星时,恒星会趋向于朝同一方向旋转。然而,这种现象以前从未如此直接地出现过。这些排列整齐、拉长的结构是恒星诞生的基本方式的历史记录"。这张来自美国宇航局詹姆斯-韦伯太空望远镜的图片显示了蛇夫座星云的一部分,天文学家在这里发现了一组排列整齐的原恒星外流。这些喷流以红色的明亮块状条纹为标志,这是喷流撞击周围气体和尘埃产生的冲击波。在这里,红色代表分子氢和一氧化碳的存在。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)恒星形成的机理那么,恒星喷流的排列与恒星的旋转有什么关系呢?当星际气体云撞向自身形成恒星时,它的旋转速度会更快。气体继续向内移动的唯一方法就是去除部分自旋(称为角动量)。年轻恒星周围会形成一个物质盘,将物质向下输送,就像排水口周围的漩涡一样。内盘中的漩涡磁场将部分物质发射成双子喷流,以垂直于物质盘的相反方向向外喷射。在韦伯望远镜的图像中,这些喷流以红色的明亮块状条纹为标志,这是喷流撞击周围气体和尘埃产生的冲击波。在这里,红色代表分子氢和一氧化碳的存在。这幅图像显示的是美国宇航局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)看到的蛇夫座星云中心。在这幅图像中,整个区域中不同色调的丝状物和缕状物代表了云中仍在形成的原恒星反射的星光。在某些区域,反射光前方有尘埃,在这里呈现出橙色的漫射阴影。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)增强型成像技术韦伯望远镜的主要作者、巴尔的摩太空望远镜科学研究所的乔尔-格林(Joel Green)说:"蛇夫座星云的这一区域蛇夫座北星云只有在韦伯望远镜上才能清晰地看到。我们现在能够捕捉到这些极其年轻的恒星和它们的外流,其中一些恒星以前只是以圆球的形式出现,或者由于它们周围厚厚的尘埃而在光学波长下完全看不到。"天文学家说,在年轻恒星生命的这一时期,有几种力量可能会改变外流的方向。其中一种方式是双星相互旋转,摆动方向,随着时间的推移扭曲外流的方向。这幅由韦伯近红外相机(NIRCam)拍摄的蛇夫座星云图像显示了罗盘箭头、比例尺和供参考的色键。向北和向东的罗盘箭头显示了图像在天空中的方位。请注意,相对于地面地图上的方向箭头(从上往下看),天空中的北方和东方之间的关系(从下往上看)是颠倒的。刻度条标注的单位是光年,也就是光在一个地球年所走过的距离。一光年约等于 5.88 万亿英里或 9.46 万亿公里。这张图片显示的是不可见的近红外光波长,这些波长已被转换成可见光的颜色。色键显示了在收集光线时使用了哪些 NIRCam 滤光片。每个滤光片名称的颜色就是用来表示通过该滤光片的红外光的可见光颜色。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)蛇夫座星云的恒星蛇夫座星云距离地球 1300 光年,只有一两百万年的历史,从宇宙的角度来看非常年轻。它也是一个新形成的恒星(约 10 万年)特别密集的星团的所在地,在这张图片的中心可以看到。其中一些恒星的质量最终将达到我们太阳的质量。格林说:"韦伯望远镜是一台年轻恒星天体探测机器。在这个领域中,我们可以捕捉到每一颗年轻恒星的路标,直至质量最低的恒星。我们现在看到的是一幅非常完整的画面。"在这张照片的整个区域中,不同色调的丝状物和缕状物代表了云中仍在形成的原恒星反射的星光。在某些区域,反射光前方有灰尘,在这里呈现出橙色的漫射阴影。2020 年,美国宇航局哈勃太空望远镜的数据显示,一颗恒星的行星形成盘发生了扇动或移动,"蝙蝠阴影"由此得名。在韦伯图像的中心位置可以看到这一特征。未来研究之路新图像和偶然发现的对齐天体实际上只是这项科学计划的第一步。研究小组现在将利用韦伯望远镜的近红外摄谱仪(NIRSpec)来研究云的化学构成。天文学家们对确定挥发性化学物质如何在恒星和行星形成过程中存活下来很感兴趣。挥发性物质是在相对较低的温度下升华或从固态直接转变为气态的化合物,包括水和一氧化碳。然后,他们将把他们的发现与在类似类型恒星的原行星盘中发现的数量进行比较。"从最基本的形式来看,我们都是由来自这些挥发物的物质构成的。地球上的大部分水起源于数十亿年前太阳还是一颗幼年原恒星的时候,"庞托皮丹说。"观察原恒星在形成原行星盘之前这些关键化合物的丰度,有助于我们了解太阳系形成时的独特环境。"这些观测是第 1611 号一般观测者计划的一部分。研究小组的初步结果已被接受在《天体物理学报》上发表。詹姆斯-韦伯太空望远镜(JWST)是一个大型天基观测站,将于 2021 年 12 月发射。它是哈勃太空望远镜的科学继承者。JWST 配备了一个 6.5 米长的主镜,专门观测红外光谱中的宇宙,使其能够比以往任何时候都能回溯到更久远的过去。这种能力使望远镜能够研究最初星系的形成、恒星和行星系统的演化以及遥远系外行星的大气层。JWST 位于第二拉格朗日点(L2),距离地球约 150 万公里,旨在提供前所未有的分辨率和灵敏度,为探索宇宙打开新的窗口。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜在周边的行星系统中发现了水

韦伯望远镜在周边的行星系统中发现了水 天文学家检测到附近一颗恒星附近有水蒸气旋转,这表明围绕它形成的行星有一天可能能够支持生命。 这个年轻的行星系统被称为 PDS 70,距离我们 370 光年。其中心的恒星大约有 540 万年的历史,温度比我们的太阳还要低。围绕它旋转的是两颗已知的气态巨行星,研究人员最近确定其中一颗 PDS 70b 可能与正在形成的第三颗“兄弟”行星共享其轨道。 两种不同的气体和尘埃盘(形成恒星和行星所需的成分)围绕着恒星。内盘和外盘之间的间隙长达 50 亿英里(80 亿公里)。气态巨行星位于间隙中,它们围绕恒星运行。 韦伯望远镜的中红外仪器检测到距离恒星不到 1 亿英里(1.6 亿公里)的内盘中水蒸气的特征。天文学家认为,如果 PDS 70 与我们的太阳系类似,那么内盘可能会形成与太阳系类似的小型岩石行星。 在我们的系统中,地球的轨道距太阳 9300 万英里(1.5 亿公里)。 上周在《自然》 杂志上发表了一项。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人