一种高效制氢的新方法可消除爆炸风险和对稀土金属的需求

一种高效制氢的新方法可消除爆炸风险和对稀土金属的需求 瑞典的科学家们开发出了一种创新方法,可以更高效地产生氢能。这一工艺将水分离成氧气和氢气,消除了两种气体结合的危险可能性。这种新方法由位于斯德哥尔摩的 KTH 皇家理工学院开发,它与生产氢气的标准电解过程分离,后者通过电流分裂水分子。与现有系统不同的是,它能分别产生氧气和氢气,而不是同时在同一个电池中产生,因为在同一个电池中,氧气和氢气需要用膜屏障来分离KTH的博士生埃斯特班-托莱多(Esteban Toledo)与KTH应用物理学教授乔伊迪普-杜塔(Joydeep Dutta)共同撰写了今天发表在《科学进展》(Science Advances)上的论文。它还无需稀土金属。两位研究人员为该系统申请了专利,并通过 KTH Innovation 成立了一家名为 Caplyzer AB 的公司来推广这项技术。合著者之一、KTH 皇家理工学院博士生埃斯特班-托莱多(Esteban Toledo)在瑞典斯德哥尔摩使用解耦水分离原型。图片来源:David Callahan商业可行性和效率Dutta 说,氢气转化的法拉第效率达到 99%。研究人员还报告说,实验室测试表明,经过长期测试,电极没有明显退化,这对商业应用非常重要。从水中产生氢的同时总是会产生氧气。典型的碱性电解槽有一个正极和一个负极,正极和负极配对放在一个装有碱性水的槽内,中间有一个可渗透离子的屏障隔开。通电后,水在阴极发生反应,形成氢离子和带负电荷的氢氧根离子,这些离子通过屏障扩散到阳极产生氧气。但屏障会产生阻力,如果电荷波动,氧气和氢气混合爆炸的风险就会增加。托莱多说,对电解水的重新认识为更可靠的绿色能源生产方式奠定了基础,并将太阳能或风能等间歇性能源纳入其中。他说:"由于我们没有混合气体的风险,我们可以在更大的输入功率范围内运行。这样就更容易与通常提供可变功率的可再生能源相结合"。用碳制成的超级电容电极取代其中一个电极,可以避免同时产生气体。这些电极交替储存和释放离子,有效地分离了氢气和氧气的产生。当电极带负电并产生氢气时,超级电容器会储存富含能量的氢氧(OH)离子。当电流方向改变时,超级电容器会释放吸收的氢氧根离子,并在现在的正极产生氧气。Dutta 说:"一个电极同时完成氧气和氢气的进化。这很像充电电池产生氢气交替充电和放电,这都是为了完成电路"。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

韩国能源研究所发现新方法 可生产基于氨的清洁氢气

韩国能源研究所发现新方法 可生产基于氨的清洁氢气 科学家们推出了一种不使用化石燃料、利用氨生产清洁氢气的新技术,为氢动力汽车提供了一种生态友好型替代品,并有望应用于可持续能源和运输领域。图为第一个无碳氨分解反应器。图片来源:韩国能源研究院氨是氢和氮的化合物,其储氢密度是液化氢的 1.7 倍,作为最具成本效益的氢气运输方法,它正受到越来越多的关注。特别是,由于它在化肥等各个领域的应用已有 100 多年的历史,因此具备基础设施、处理和安全标准。它被认为是解决氢气储存和运输难题的最实用的解决方案。氨基无碳制氢技术的基本原理(上)。现有技术与 KIER 技术的比较(下图)。资料来源:韩国能源研究院清洁制氢工艺氨气仅由氢和氮组成,因此在分离氢气时不会排放碳。分解过程需要 600℃以上的热能,而目前使用的是化石燃料,因此会排放二氧化碳。因此,要生产清洁的氢气,即使在分解氨的过程中也必须使用无碳能源。通过利用分解反应中残留的少量氢气和氨气,研究人员能够在不使用化石燃料的情况下生产氢气。右起:研究人员 Jung Unho、Koo Kee Young、Park Youngha。资料来源:韩国能源研究院要从氨气中生成纯氢,需要使用钌(Ru)催化剂在 600℃以上的温度下分解氨气,然后通过变压吸附(PSA)技术提纯氢气。在采用这种方法时,会形成氮气和氢气的残余混合气体,并被重新用作氨分解反应器的加热元件。尽管如此,残余气体本身并不能提供足够的反应热,因此必须添加额外的热量。用创新解决方案克服挑战在现有技术中,由于使用天然气(LNG)或液化石油气(LPG)等化石燃料补充反应热不足,因此在燃烧过程中会排放二氧化碳。但是,利用这次开发的系统,通过提供氨而不是化石燃料,可以提供反应热,从源头上阻止二氧化碳的排放。利用所开发的系统,每小时可生产 5Nm3 (约 0.45 千克)纯度超过 99.97% 的高纯度氢气,这种氢气可提供给氢能电动汽车的燃料电池。此外,所生产的氢气的氮杂质浓度小于 300ppm,氨杂质浓度小于 0.1ppm。它符合氢燃料电动汽车的国际标准 ISO 14687。采用1000瓦级 PEMFC 的氨基制氢系统。资料来源:韩国能源研究院研究团队利用从氨中提取的氢气,展示了用于建筑物的 1 千瓦燃料电池系统,该系统在发电的同时不会排放二氧化碳,这是一个重要的里程碑。这项与斗山燃料电池动力事业部(Doosan Fuel Cell Power BU)合作进行的示范具有重要意义,因为它克服了二氧化碳排放问题,而这一直被认为是基于天然气(LNG)的燃料电池系统的缺点。它显示了使用清洁氢燃料电池发电的潜力。据首席研究员 Jung Unho 博士介绍,新开发的技术能够利用氨进行无碳制氢,填补了这一领域的空白,因此意义重大。该技术有望在使用清洁氢气的各个领域得到应用。他接着说:"氨和燃料电池的结合为生态船提供了一种可行的动力选择。随着我们规模的扩大,我们还能在清洁氢动力领域产生重大影响"。同时,本研究得到了韩国南方电力有限公司(KOSPO)的支持。(KOSPO) 的支持下进行的。编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出更便宜、更清洁、更环保的氨生产新方法

科学家开发出更便宜、更清洁、更环保的氨生产新方法 这幅图画展示了以锂为媒介将N2转化为氨的过程。图中是在电沉积锂(黑色瓷砖)上发生的一系列反应。在高压下,氮气(添加蓝色块)在锂上发生化学吸附,随后质子化(添加白色块)形成 NHx,最终生成氨气并回收锂。这一循环过程形成了产生氨的催化节奏。这项研究强调了压力和电位在控制固体电解质界面的结构和稳定性以实现氨合成方面的重要性。资料来源:Crystal Price 和 Joseph Gauthier,德克萨斯理工大学;Meenesh Singh,伊利诺伊大学芝加哥分校这一过程被称为锂介导的氨合成,它将氮气和乙醇等供氢流体与带电的锂电极结合在一起。氮原子不会在高温高压下分解氮气分子,而是粘附在锂上,然后与氢结合生成氨分子。该反应可在低温下进行,而且具有再生性,每生产一轮氨,就能恢复原来的材料。"有两个循环会发生。一个是氢源的再生,第二个是锂的再生,"UIC 化学工程副教授辛格说。"由于循环过程的存在,这一反应中充满了交响乐。我们所做的就是以一种更好的方式来理解这种交响乐,并尝试以一种非常有效的方式来调节它,这样我们就能产生共振,使其更快地进行。"辛格实验室在《ACS 应用材料与界面》( ACS Applied Materials & Interfaces)杂志封面上发表的一篇论文介绍了这一工艺,这是辛格实验室在寻求更清洁的氨方面的最新创新。在此之前,他的研究小组开发出了利用阳光和废水合成这种化学物质的方法,并制造出了一种电气化铜网筛,减少了制造氨气所需的能量。他们的最新研究成果建立在一种并不新奇的反应之上。科学家们对它的了解已有近一个世纪。"基于锂的方法实际上可以在任何有机化学教科书中找到。这是众所周知的。"辛格说。"但是,让这种循环高效、有选择性地运行,从而达到经济上可行的目标,这是我们的贡献"。这些目标包括高能效和低成本。辛格表示,如果规模扩大,该工艺生产氨的成本约为每吨 450 美元,比以前的锂基方法和其他拟议的绿色方法便宜 60%。但是,选择性也很重要,因为许多使氨生产更清洁的尝试最终都产生了大量无用的氢气。辛格小组的研究成果是首批在选择性和能源使用方面达到能源部氨工业化生产标准的成果之一。辛格还表示,该工艺可以在模块化反应器中进行,通过太阳能电池板或其他可再生能源供电,并用空气和水为反应提供原料,可以使该工艺更加绿色环保。该工艺还有助于实现另一个能源目标将氢用作燃料。实现这一目标一直受制于运输高可燃性液体的困难。"产生氢气、运输氢气并将氢气输送到氢气泵站,然后将氢气输送到汽车,这非常危险,"辛格说。"氨可以作为氢的载体。它的运输成本很低,而且很安全,在目的地可以把氨转化回氢。"目前,科学家们正与通用氨公司(General Ammonia Co.UIC)的技术管理办公室已为该工艺申请了专利。编译自:ScitechDaily ... PC版: 手机版:

封面图片

钙过量 - 科学家开发出杀死癌细胞的新方法

钙过量 - 科学家开发出杀死癌细胞的新方法 钙离子在细胞功能中起着至关重要的作用,但如果钙离子含量过高,就会对细胞造成危害。研究人员最近开发出一种化合物,可通过调节细胞内的钙离子流入来靶向摧毁肿瘤细胞。这种创新方法利用了肿瘤组织内已有的钙离子,无需外部钙源。《Angewandte Chemie》杂志上发表的一篇论文详细介绍了这一研究成果。生物细胞需要钙离子来维持线粒体(细胞的动力室)的正常运转。然而,如果钙离子过多,线粒体过程就会失衡,细胞就会窒息。由韩国首尔梨花女子大学的尹珠英(Juyoung Yoon)领导的研究小组与来自中国的研究小组一起,利用这一过程开发出了一种协同抗肿瘤药物,它可以打开钙离子通道,从而在肿瘤细胞内引发致命的钙离子风暴。研究人员瞄准了两个通道,第一个是外膜上的通道,另一个是内质网中的钙通道,内质网也是一个储存钙离子的细胞器。位于外膜的通道在暴露于大量活性氧(ROS)时打开,而内质网中的通道则被一氧化氮分子激活。为了产生能打开外膜钙通道的 ROS,研究人员使用了染料吲哚菁绿。这种生物活性剂可通过近红外线照射激活,不仅能引发导致 ROS 的反应,还能使环境升温。研究小组解释说,局部高温会激活另一种活性剂 BNN-6 释放一氧化氮分子,从而打开内质网中的通道。在肿瘤细胞系试验成功后,研究小组又在植入肿瘤的小鼠体内测试了一种注射制剂。为了创造出一种生物兼容的复合药物,研究人员将活性成分装入了微小的改性多孔硅珠中,这种硅珠对人体无害,但能被肿瘤细胞识别并转运到细胞内。将这些微珠注入小鼠血液后,研究人员观察到药物在肿瘤内积聚。照射近红外线成功地触发了作用机制,接受这种制剂的小鼠几天后肿瘤就消失了。作者强调,这种离子流入方法可能也适用于相关的生物医学研究领域,因为类似的机制可以激活不同于钙离子通道的离子通道,从而找到新的治疗方法。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

日本首部氢能源电车正式投入测试

日本首部氢能源电车正式投入测试 JR东日本在2022年公开了「HYBARI」列车,2年后的2月28日初次进行实际试验,行走横滨至川崎的JR鹤见线。 车上有储存氢气的汽缸,和空气中的氧气产生化学作用,从而生产电力为电车提供动能,期间产生的只是水,列车最高时速100公里,补充一次氢气可走约140公里。

封面图片

日本科学家发明一种新方法 大大降低了生产低氧钛的成本

日本科学家发明一种新方法 大大降低了生产低氧钛的成本 东京研究人员开发的一种新方法大大降低了生产低氧钛的成本,一旦钇污染问题得到解决,有望在工业领域得到更广泛的应用。钛是地壳中含量第九高的元素,但由于从钛矿石中提取氧气的成本较高,因此用纯钛制造的产品很少见。降低这些成本可以促使制造商在其产品中更广泛地利用钛的有益特性。现在,东京大学工业科学研究所的研究人员在最近发表于《自然-通讯》(Nature Communications)上的一项研究中,开发出了一种程序,可以降低生产几乎完全不含氧的钛的成本。这种除氧方案可能有利于技术发展和环境的可持续发展。钛的特性与挑战钛是一种用途极为广泛的材料,因为它不仅通常能抵御化学损伤,而且坚固而轻巧。例如,与其他金属相比,钛的重量很轻,这就是为什么现代 iPhone 的基本框架由钛合金组成,尽管成本增加了。东京大学工业科学研究所的研究人员从高氧浓度的钛中有效地除去了氧气,这可能有助于降低这种用途广泛的金属的生产成本。资料来源:东京大学工业科学研究所遗憾的是,由于制备高纯度钛需要耗费大量能源和资源,因此生产超纯钛的成本远远高于生产钢(一种铁合金)和铝。开发一种廉价、简便的方法来制备超纯钛,并为工业和普通消费者的产品开发提供便利,正是研究人员要解决的问题。创新的除氧技术该研究的主要作者 Toru H. Okabe 解释说:"工业大量生产铁和铝金属,但不生产钛金属,因为从矿石中去除氧气的成本很高。我们采用了一种基于稀土金属的创新技术,可以将钛中的氧去除到单位质量的 0.02%。"研究人员方案中的一个关键步骤是将熔融钛与金属钇和三氟化钇或类似物质进行反应。最终得到的是一种低成本、固态、脱氧的钛合金。反应后的钇可以回收再利用。研究人员工作的一大亮点是,即使是含有大量氧气的钛废料也可以用这种方法进行处理。"我们对协议的多功能性感到兴奋,"Toru H. Okabe 说。Okabe 说。"缺乏中间化合物和简单明了的程序将促进工业界的采用。"与目前相比,这项工作在更有效地利用高纯度钛方面迈出了重要一步。这项工作的局限性在于,脱氧后的钛含有钇,质量含量高达 1%;钇会影响钛合金的机械和化学特性。在解决了钇污染问题后,应用于工业制造将变得简单易行。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法 HZDR 的研究人员成功地在磁盘中产生了类似于波的激发即所谓的磁子来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR / Mauricio Bejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(Science Advances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR 研究员、该刊物第一作者毛里西奥-贝哈拉诺(Mauricio Bejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和 IBM 在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR 小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR 团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人