科学家捕捉到光驱动聚合物的蛛丝马迹

科学家捕捉到光驱动聚合物的蛛丝马迹 高速原子力显微镜与激光照射系统相结合,用于原位实时观察偶氮聚合物的变形过程。资料来源:大阪大学偶氮聚合物是一种光活性材料,这意味着当光线照射到它们时,它们会发生变化。具体来说,光线会改变它们的化学结构,从而改变薄膜的表面。这使得它们在光学数据存储和提供光触发运动等应用中颇具吸引力。能够在捕捉图像的同时用聚焦激光引发这些变化被称为原位测量。"通常,研究聚合物薄膜的变化时,需要对其进行处理,例如用光照射,然后进行测量或观察。然而,这只能提供有限的信息,"该研究的第一作者 Keishi Yang 解释说。"使用高速原子力显微镜(HS-AFM)装置,包括一台带激光器的倒置光学显微镜,使我们能够触发偶氮聚合物薄膜的变化,同时以高时空分辨率对其进行实时观测。"(a)与激光辐照系统集成的高速原子力显微镜概述 b)偶氮聚合物变形的高速原子力显微镜图像。资料来源:美国化学学会高速原子力显微镜测量能够以每秒两帧的速度跟踪聚合物薄膜表面的动态变化。研究还发现,所使用的偏振光的方向会对最终的表面图案产生影响。利用原位方法进行的进一步研究有望深入了解光驱动偶氮聚合物变形的机理,从而最大限度地发挥这些材料的潜力。该研究的资深作者 Takayuki Umakoshi 说:"我们已经展示了观察聚合物薄膜形变的技术。不过,在此过程中,我们展示了将尖端扫描 HS-AFM 和激光源结合起来,用于材料科学和物理化学的潜力"。对光有反应的材料和过程在化学和生物学的多个领域都很重要,包括传感、成像和纳米医学。原位技术为加深理解和最大限度地发挥潜力提供了机会,因此有望应用于各种光学设备。编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

环保技术新突破:科学家利用植物纤维素制成新型聚合物

环保技术新突破:科学家利用植物纤维素制成新型聚合物 科学家们设计出了一种利用纤维素生产可回收且稳定的聚合物的方法,为传统塑料提供了一种可持续的替代品。这一研究成果为生产环保材料提供了新的可能性。上图为本研究开发的新型可回收聚合物制成的透明薄膜。资料来源:Feng Li他们开发出了一种方便、多用途的方法,利用从植物纤维素中提取的化学物质制造各种聚合物;最重要的是,这些聚合物可以完全回收利用。该方法发表在《ACS Macro Letters》杂志上。纤维素是植物生物质中最丰富的成分之一,是所有植物细胞周围坚韧细胞壁的关键部分。纤维素很容易从稻草和锯末等植物废料中获取,因此,将纤维素用作聚合物生产的原料不会减少用于粮食生产的农业用地。纤维素是一种长链多糖聚合物,即由多个糖基(特别是葡萄糖)通过化学键连接而成。为了制造新型聚合物,北海道研究小组使用了两种市售的小分子,即由纤维素制成的左旋葡糖烯酮(LGO)和二氢左旋葡糖烯酮(Cyrene)。他们开发了新颖的化学工艺,将 LGO 和 Cyrene 转化为各种非天然多糖聚合物。通过改变聚合物的精确化学结构,可以生成不同的材料,用于各种可能的应用。"我们面临的最大挑战是控制将较小单体分子连接在一起的聚合反应,以及获得对普通应用足够稳定的多糖材料,同时还能在特定化学条件下被分解和回收。"左起研究小组的佐藤俊文、水上雄太、李锋和矶野拓也。图片来源:李锋李补充说,研究过程中最大的惊喜是他们制作的聚合物薄膜具有很高的透明度,这对于这些聚合物似乎最适合的专业应用来说可能至关重要。另一位通讯作者 Toshifumi Satoh 教授补充说:由于这些材料相当坚硬,可能难以用作塑料袋等柔性塑料材料,因此我认为它们更适合用作光学、电子和生物医学应用领域的高性能材料。世界各地的其他研究小组也在探索用植物制造塑料替代聚合物的潜力,其中一些"生物塑料"已经可以在市场上买到,但佐藤的研究小组为这一快速发展的领域增添了一个重要的新机会。研究小组现在计划探索更多的可能性,但可行的结构变化非常多,因此他们希望与计算化学、人工智能和自动合成方面的专家联手探索这些选择。"我们希望这项工作能开发出多种有用的非天然多糖聚合物,使其成为从生物质到高效回收的可持续合成闭环的一部分。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性 研究人员创造了一种名为"玻璃凝胶"的新型材料,这种材料与玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原长度的五倍,而不会断裂。玻璃态凝胶的一个关键特点是,它们的液体含量超过 50%,这使得它们比具有类似物理特性的普通塑料更能有效导电。资料来源:北卡罗来纳州立大学王美香科学家们发明了一种名为"玻璃凝胶"的新型材料,这种材料尽管含有 50% 以上的液体,但却非常坚硬且不易破裂。加上玻璃凝胶易于生产,这种材料有望应用于多种领域。凝胶体和玻璃态聚合物是历来被视为截然不同的两类材料。玻璃态聚合物质地坚硬,通常比较脆。它们用于制造水瓶或飞机窗户等物品。凝胶(如隐形眼镜)含有液体,柔软而有弹性。"我们创造了一类被称为玻璃凝胶的材料,这种材料和玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原来长度的五倍,而不会断裂,"这项研究论文的通讯作者、北卡罗来纳州立大学化学和生物分子工程系卡米尔和亨利-德雷福斯教授迈克尔-迪基(Michael Dickey)说。"更重要的是,一旦材料被拉伸,你就可以通过加热使其恢复原状。此外,玻璃凝胶的表面具有很强的粘性,这在硬质材料中并不多见。"该论文的共同第一作者、北卡罗来纳州立大学博士后研究员王美香说:"玻璃凝胶的一个关键特点是,它们的液体含量超过 50%,这使得它们比物理特性相当的普通塑料更能高效导电。考虑到这些材料所具有的许多独特性质,我们对它们的用途感到乐观。"玻璃态凝胶,顾名思义,实际上是一种结合了玻璃态聚合物和凝胶最诱人特性的材料。为了制造玻璃态凝胶,研究人员首先将玻璃态聚合物的液态前体与离子液体混合。将这种混合液体倒入模具中,暴露在紫外线下,使材料"固化"。然后移除模具,留下玻璃状凝胶。"离子液体是一种溶剂,就像水一样,但完全由离子组成,"Dickey 说。"通常在聚合物中添加溶剂时,溶剂会推开聚合物链,使聚合物变得柔软、可伸展。这就是为什么湿隐形眼镜柔软,而干隐形眼镜不柔软的原因。在玻璃态凝胶中,溶剂会将聚合物分子链推开,使其像凝胶一样具有拉伸性。然而,溶剂中的离子会强烈吸引聚合物,从而阻止聚合物链移动。链条无法移动就使其成为玻璃状。最终的结果是,由于吸引力的作用,材料变得坚硬,但由于额外的间距,材料仍然能够拉伸。"研究人员发现,玻璃凝胶可以用各种不同的聚合物和离子液体制成,但并非所有类别的聚合物都能用于制造玻璃凝胶。Dickey说:"带电或极性的聚合物有望用于玻璃凝胶,因为它们会被离子液体吸引。也许玻璃凝胶最吸引人的特点就是它们的粘性,因为虽然我们知道是什么让它们变得坚硬和可拉伸,但我们只能猜测是什么让它们如此具有粘性。"在测试中,研究人员发现,玻璃状凝胶即使含有 50-60% 的液体,也不会蒸发或变干。他们还认为,玻璃凝胶易于制造,因此有望得到实际应用。Dickey 说:"制造玻璃态凝胶是一个简单的过程,可以通过在任何类型的模具中固化或 3D 打印来实现。大多数具有类似机械性能的塑料都要求制造商将聚合物作为原料进行生产,然后将聚合物运输到另一个工厂,在那里聚合物被熔化并形成最终产品。我们很高兴看到如何使用玻璃凝胶,并愿意与合作者一起确定这些材料的应用"。这篇题为"由溶剂增韧的玻璃凝胶"的论文于 6 月 19 日发表在《自然》杂志上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

原子定格:科学家首次捕捉到水中的电子运动

原子定格:科学家首次捕捉到水中的电子运动 2月15日,《科学》(Science)杂志报道了这一研究成果,它为研究液相分子的电子结构提供了一个新的视窗,而这种视窗的时间尺度是以前的X射线所无法达到的。这项新技术揭示了当目标被X射线击中时的即时电子反应,这是了解辐照对物体和人的影响的重要一步。这项研究的资深作者、阿贡国家实验室特聘研究员琳达-杨说:"我们想研究的辐射诱导的化学反应是目标电子反应的结果,这种反应发生在阿秒时间尺度上。到目前为止,辐射化学家只能分辨皮秒级的事件,比阿秒级慢一百万倍。这有点像说'我出生了,然后我死了'。你想知道这中间发生了什么。这正是我们现在能够做到的。""我们开发的方法允许研究......辐射诱导过程产生的反应物,例如太空旅行、癌症治疗、核反应堆和遗留废物中遇到的反应物。"阿贡杰出研究员、芝加哥大学物理系和詹姆斯-弗兰克研究所教授琳达-杨介绍说。来自美国能源部多个国家实验室以及美国和德国多所大学的多机构科学家小组将实验与理论相结合,实时揭示了 X 射线源的电离辐射撞击物质时产生的后果。在发生作用的时间尺度上进行研究,将使研究小组能够更深入地理解复杂的辐射诱导化学反应。事实上,这些研究人员最初是为了开发必要的工具来了解长期暴露于电离辐射对核废料中化学物质的影响而走到一起的。这项研究得到了能源部赞助的放射性环境和材料界面动力学(IDREAM)能源前沿研究中心的支持,该中心总部设在太平洋西北国家实验室(PNNL)。水样照片: 为了记录 X 射线辐射激发的电子运动,科学家们制作了一张约 1 厘米宽的液态水薄片,作为 X 射线光束的目标。图片来源:Emily Nienhuis | 太平洋西北国家实验室亚原子粒子的运动速度非常快,要捕捉它们的行动,需要一个能够以阿秒为单位测量时间的探测器,阿秒的时间范围非常小,以至于一秒钟中的阿秒比宇宙历史上已经度过的秒数还要多。目前的研究以获得 2023 年诺贝尔物理学奖的新科学阿秒物理学为基础。阿秒 X 射线脉冲仅在全球少数几个专业设施中可用。该研究团队在位于加利福尼亚州门洛帕克的SLAC国家加速器实验室的里纳克相干光源(LCLS)进行了实验工作,当地团队率先在这里开发了阿秒X射线自由电子激光器。来自SLAC国家加速器实验室的阿戈-马里内利(Ago Marinelli)说:"阿秒时间分辨实验是里纳克相干光源的旗舰研发项目之一,"他与詹姆斯-克赖恩(James Cryan)共同领导了此次实验所使用的一对同步X射线阿秒泵浦/探针脉冲的开发工作。"看到这些研发成果被应用于新型实验,并将阿秒科学带入新的发展方向,我们感到非常兴奋"。2022年6月,团队成员在SLAC国家加速器实验室里纳相干光源的控制室。从左至右: SLAC 的 David J. Hoffman、阿贡国家实验室(ANL)和芝加哥大学的 Kai Li、西北太平洋国家实验室 IDREAM 主任 Carolyn Pearce、SLAC 的 Ming-Fu Lin 和 ANL 的 Shuai Li。图片来源:Carolyn Pearce | 太平洋西北国家实验室这项研究中开发的技术液体中的全 X 射线阿秒瞬态吸收光谱,使他们能够"观察"被 X 射线激发的电子进入激发态的过程,而这一切都发生在体积更大的原子核有时间移动之前。他们选择液态水作为实验的试验品。芝加哥大学物理系和詹姆斯-弗兰克研究所教授杨说:"我们现在有了一种工具,原则上可以跟踪电子的运动,实时看到新电离分子的形成。"这些新报告的发现解决了一个长期存在的科学争论,即在以前的实验中看到的X射线信号是否是水或氢原子动态的不同结构形状或"图案"的结果。这些实验最终证明,这些信号并不是环境液态水中两种结构模式的证据。杨说:"基本上,人们在以前的实验中看到的是氢原子运动造成的模糊。我们在原子有时间移动之前进行了所有的记录,从而消除了这种移动"。研究人员将目前的研究视为阿秒科学全新方向的开端。为了实现这一发现,PNNL 的实验化学家与阿贡和芝加哥大学的物理学家、SLAC 的 X 射线光谱专家和加速器物理学家、华盛顿大学的理论化学家,以及德国汉堡超快成像中心和德国电子同步加速器(DESY)自由电子激光科学中心(CFEL)的阿秒科学理论家合作。在 2021 年至 2022 年全球大流行期间,PNNL 团队利用在 SLAC 开发的技术,在 X 射线泵脉冲路径上喷射出一片超薄的纯水。PNNL 的早期职业化学家艾米丽-尼恩胡斯(Emily Nienhuis)说:"我们需要一个漂亮、平整、薄的水片,在那里我们可以聚焦 X 射线。这种能力是在 LCLS 开发出来的。在 PNNL,Nienhuis 演示了这种技术也可用于研究 IDREAM EFRC 核心的特定浓缩溶液,并将在下一阶段的研究中进行调查。"收集到 X 射线数据后,来自华盛顿大学的理论化学家李晓松和研究生卢立新运用他们解释 X 射线信号的知识,再现了在 SLAC 观察到的信号。由理论家罗宾-桑特拉(Robin Santra)领导的CFEL小组建立了液态水对阿秒X射线响应的模型,以验证观测到的信号确实局限于阿秒时间尺度。"利用华盛顿大学的 Hyak 超级计算机,我们开发出了一种尖端的计算化学技术,能够详细描述水的瞬态高能量子态,"华盛顿大学 Larry R. Dalton 化学讲座教授、PNNL 实验室研究员李说。"这一方法学上的突破在量子层面理解超快化学转化方面取得了举足轻重的进展,其准确性和原子级细节都非常出色。"首席研究员杨发起了这项研究并监督其实施,第一作者和博士后Shuai Li在现场领导了这项研究。阿贡的物理学家吉勒-杜米(Gilles Doumy)和芝加哥大学的研究生李凯(Kai Li)是进行实验和分析数据的团队成员。阿贡纳米材料中心是美国能源部科学办公室的用户设施,该中心帮助鉴定了水片喷射目标的特性。研究团队一起窥探了液态水中电子的实时运动,而世界上的其他地方却静止不动。杨说:"我们开发的方法允许研究辐射诱导过程产生的活性物种的起源和演化,例如太空旅行、癌症治疗、核反应堆和遗留废物中遇到的活性物种。"编译自/scitechdaily ... PC版: 手机版:

封面图片

科学家捕捉到光合作用“从水到氧”过程

科学家捕捉到光合作用“从水到氧”过程 日本冈山大学教授沈建仁等人成功捕捉到了负责植物光合作用的蛋白质中存在的催化剂吸收水分子的瞬间。研究报告发表在本周出版的《》期刊上。光合作用是指植物和藻类利用阳光分解水和二氧化碳、产生能量和氧气的反应。名为“光系统Ⅱ”的约 20 个蛋白质与叶绿素组成的复合体吸收光能,从水分子中分离电子和氢离子,形成氧气分子的过程是光合作用的开始。研究团队此前捕捉到水分子被光系统Ⅱ吸收之后的情形,但不知道这一过程中发生了什么。研究团队在 X 射线激光设施“SACLA”中,利用持续数十飞秒(1 秒的 1000 万亿分之一)的 X 射线进行闪光拍摄,捕捉到了光系统Ⅱ蛋白质的快速活动。用可见光照射蛋白质,在促进反应的同时,通过 X 射线照射分析了吸收水分子后立体结构发生变化的情形。 沈教授表示,今后将对光系统Ⅱ的最后一步,也就是出现氧分子的过程进行分析。如果能解析植物的光合作用,并应用其原理,或有望实现人工光合作用。来源 , 图:圆形的大型放射光设施“SPring-8”和直线型的X射线自由电子激光设施“SACLA” 频道:@kejiqu 群组:@kejiquchat

封面图片

中国科学家“看到”冰表面原子结构

中国科学家“看到”冰表面原子结构 北京大学物理学院、北京怀柔综合性国家科学中心轻元素量子材料交叉平台(简称轻元素平台)组成的研究团队,利用自主研发的国产 qPlus 型扫描探针显微镜,在国际上首次“看到”冰表面的原子结构,并揭示其在零下 153 摄氏度即开始融化的奥秘。该成果 22 日晚发表于国际学术期刊《》上。 冰表面的研究对探索生命起源和物质来源具有重要意义,但因缺乏原子尺度实验工具,科学界对冰表面结构的基本问题一直未有明确解答。 据介绍,团队利用 qPlus 型扫描探针显微镜,开发出可分辨氢原子和化学键的成像技术,实现冰表面水分子氢键网络的精确识别和氢原子分布的精准定位。探测发现,冰表面结构同时存在六角密堆积和立方密堆积两种排列方式,且拼接堆砌形成稳定的网络结构。 轻元素平台负责人江颖教授表示:“我们通过变温实验,首次在原子尺度上‘看到’冰表面预融化的过程,发现其在零下 153 摄氏度时就开始融化,这对理解冰面的润滑现象、云的形成及冰川的消融过程等至关重要”。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

科学家在最近发现的"温奇科姆"陨石中发现有关地球生命起源的新线索

科学家在最近发现的"温奇科姆"陨石中发现有关地球生命起源的新线索 一类罕见的陨石被称为"碳质陨石",富含碳和氮等化学物质,很可能在向早期地球输送水和有机分子的过程中发挥了关键作用。温奇科姆是一块碳质陨石,据广泛观测,它于 2021 年 2 月坠落在英国,在着陆约 12 小时后才采集到第一批样本。因此,它为科学家们提供了一个研究早期太阳系有机物成分的机会,而不会出现通常会影响陨石研究的严重陆地蚀变效应。纳米级分析与发现由利兹大学、曼彻斯特大学和约克大学的科学家组成的多学科研究小组与伦敦自然历史博物馆、钻石光源、美因茨马克斯-普朗克化学研究所的同事合作,并由德国明斯特大学牵头,首次在纳米尺度上对温奇科姆陨石中的有机物进行了深入分析。他们利用位于柴郡达尔斯伯里的超级电子显微镜设施(SuperSTEM Facility)中世界上功能最强大的电子显微镜之一,将同步辐射数据与有关有机物中存在的功能化学基团性质的超高分辨率光谱信息进行了独特的关联。这幅图示意性地展示了如何非常精确地提取陨石的极薄片,以便在 X 射线光束下(在钻石光源)或在电子显微镜下(在 SuperSTEM)对富含碳化学物质的感兴趣区域进行进一步检查。资料来源:D.M. Kepaptsoglou,SuperSTEM这样就可以对含氮的生物相关分子(包括氨基酸和核碱基)进行引人注目的原位检测,而氨基酸和核碱基是生物学中使用的大型复杂蛋白质的基本组成部分。研究表明,温奇科姆仍然含有原始的地外有机分子,这些分子可能对早期地球生命的出现至关重要。研究结果发表在《自然通讯》杂志上。利兹大学化学与加工工程学院高级电子显微镜学教授昆廷-拉马斯(Quentin Ramasse)是SuperSTEM实验室电子显微镜小组的负责人,他介绍说:"这项工作表明,最近电子显微镜仪器的进步,包括单色高能分辨率电子源和高灵敏度的新型探测器设计,使我们能够以前所未有的分辨率和效率分析地外有机物。这为今后利用紧凑型、易于获得的电子显微镜仪器以及同步辐射研究这些材料开辟了新的途径"。前沿技术和未来影响领导这项研究的明斯特大学高级研究员克里斯蒂安-沃尔默(Christian Vollmer)说:"无需使用任何化学提取方法就能在温奇科姆鉴定出氨基酸和核碱基等生物相关分子,这令人非常兴奋,尤其是我们能够在纳米尺度上突出这些分子局部浓度的空间变化。这表明,我们的方法使得绘制陨石中的功能化学图谱成为可能,即使有机域的尺寸非常小,化合物的丰度非常低"。研究人员使用了超级电子显微镜实验室(SuperSTEM Laboratory),这是英国国家先进电子显微镜研究设施,由英国工程与物理研究理事会(EPSRC)支持。该设施拥有世界上研究物质原子结构最先进的设备,由利兹大学牵头的学术联盟(还包括参与该项目的曼彻斯特大学和约克大学,以及牛津大学、格拉斯哥大学和利物浦大学)支持运营。在 X 射线光束下(钻石光源)或在电子显微镜下(SuperSTEM),可以非常精确地提取陨石的极薄片,以富含含碳化学物质的感兴趣区域为目标,进行进一步检查。收藏温奇科姆陨石的自然历史博物馆研究员阿什利-金博士说:"我们的观测结果表明,温奇科姆是碳质陨石收藏中的重要一员,其原始的成分使我们对早期太阳系有机分子的认识有了新的突破"。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人