黄仁勋抛出2700W功耗的真核弹 还有240TB显存的AI超级计算机

黄仁勋抛出2700W功耗的真核弹 还有240TB显存的AI超级计算机 Blackwell B200 GPU首次采用了chiplet晶粒封装,包含两颗B100,而B200之间再通过带宽翻倍达1.8TB/s的第五代NVLink 5总线互连,最多可连接576块。B100采用专门定制的台积电4NP工艺制造(H100/RTX 40 4N工艺的增强版),已经达到双倍光刻极限尺寸,彼此通过10TB/s带宽的片间互联带宽,连接成一块统一的B200 GPU。B100集成多达1040亿个晶体管,比上代H100 800亿个增加了足足30%,B200整体就是2080亿个晶体管。核心面积未公布,考虑到工艺极限应该不会比814平方毫米的H100大太多。CUDA核心数量也没说,但肯定会大大超过H100 16896个,不知道能不能突破2万个?每颗B100连接四颗24GB HBM3E显存/内存,等效频率8GHz,位宽4096-bit,带宽达4TB/s。如此一来,B200就有多达192GB HBM3E,总位宽8096-bit,总带宽8TB/s,相比H100分别增加1.4倍、58%、1.4倍。性能方面,B200新增支持FP4 Tensor数据格式,性能达到9PFlops(每秒9千万亿次),INT/FP8、FP16、TF32 Tensor性能分别达到4.5、2.25、1.1PFlops,分别提升1.2倍、1.3倍、1.3倍,但是FP64 Tensor性能反而下降了40%(依赖GB200),FP32、FP64 Vector性能则未公布。Blackwell GPU还支持第二代Transformer引擎,支持全新的微张量缩放,在搭配TensorRT-LLM、NeMo Megatron框架中的先进动态范围管理算法,从而在新型4位浮点AI推理能力下实现算力和模型大小的翻倍。其他还有RAS可靠性专用引擎、安全AI、解压缩引擎等。至于功耗,B100控制在700W,和上代H100完全一致,B200则首次达到了1000W。NVIDIA宣称,Blackwell GPU能够在10万亿参数的大模型上实现AI训练和实时大语言模型推理。GB200 Grace Blackwell是继Grace Hopper之后的新一代超级芯片(Superchip),从单颗GPU+单颗CPU升级为两颗GPU加一颗CPU,其中GPU部分就是B200,CPU部分不变还是Grace,彼此通过900GB/s的带宽实现超低功耗片间互联。在大语言模型推理工作负载方面,GB200超级芯片的性能对比H100提升了多达30倍。不过代价也很大,GB200的功耗最高可达2700W,可以使用分冷,更推荐使用液冷。基于GB200超级芯片,NVIDIA打造了新一代的AI超级计算机“DGX SuperPOD”,配备36块超级芯片,也就是包含36颗Grace CPU、72颗B200 GPU,彼此通过NVLink 5组合在一起,还有多达240TB HBM3E。这台AI超级计算机可以处理万亿参数的大模型,能保证超大规模生成式AI训练和推理工作负载的持续运行,FP4精度下的性能高达11.5EFlops(每秒1150亿亿次)。DGX SuperPOD还具有极强的扩展性,可通过Quantum-X800 InfiniBand网络连接,扩展到数万颗GB200超级芯片,并加入BlueField-3 DPU数据处理单元,而每颗GPU都能获得1.8TB/s的高带宽。第四代可扩展分层聚合和规约协议(SHARP)技术,可提供14.4TFlops的网络计算能力,比上代提升4倍。此外,NVIDIA还发布了第六代通用AI超级计算平台“DGX B200”,包含两颗Intel五代至强处理器、八颗B200 GPU,具备1.4TB HBM3E、64TB/s带宽,FP4精度性能144PFlops(每秒14亿亿次),万亿参数模型实时推理速度提升15倍。DGX B200系统还集成八个NVIDIA ConnectX-7网卡、两个BlueField-3 DPU高性能网络,每个连接带宽高达400Gb/s,可通过Quantum-2 InfiniBand、Spectrum?-X以太网网络平台,扩展支持更高的AI性能。基于Blackwell GPU的产品将在今年晚些时候陆续上市,亚马逊云、戴尔、谷歌、Meta、微软、OpenAI、甲骨文、特斯拉、xAI等都会采纳。亚马逊云、谷歌云、微软Azeure、甲骨文云将是首批提供Blackwell GPU驱动实例的云服务提供商,NVIDIA云合作伙伴计划的中的Applied Digital、CoreWeave、Crusoe、IBM Cloud、Lambda也将提供上述服务。Indosat Ooredoo Hutchinson、Nebius、Nexgen Cloud、甲骨文欧盟主权云、甲骨文美国/英国/澳大利亚政府云、Scaleway、新加坡电信、Northern Data Group旗下的Taiga Cloud、Yotta Data Services旗下的Shakti Cloud、YTL Power International 等主权AI云,也将提供基于Blackwell架构的云服务和基础设施。 ... PC版: 手机版:

相关推荐

封面图片

英伟达发布用于人工智能的“世界上最强大芯片”Blackwell B200 GPU

英伟达发布用于人工智能的“世界上最强大芯片”Blackwell B200 GPU 英伟达的 H100 AI 芯片使其成为价值数万亿美元的公司,其价值可能超过 Alphabet 和亚马逊,而竞争对手一直在奋力追赶。但也许英伟达即将通过新的 Blackwell B200 GPU 和 GB200“超级芯片”扩大其领先地位。该公司在加州圣何塞举行的 GTC 大会上表示,新的 B200 GPU 拥有 2080 亿个晶体管,可提供高达 20petaflops 的 FP4 算力,而 GB200 将两个 GPU 和单个 Grace CPU 结合在一起,可为 LLM 推理工作负载提供30倍的性能,同时还可能大大提高效率。英伟达表示,在具有 1750 亿个参数的 GPT-3 LLM 基准测试中,GB200 的性能是 H100 的7倍,而英伟达称其训练速度是 H100 的4倍。

封面图片

NVIDIA“最强AI芯片”Blackwell B200 GPU令业内惊呼新的摩尔定律诞生

NVIDIA“最强AI芯片”Blackwell B200 GPU令业内惊呼新的摩尔定律诞生 在GTC直播中,黄仁勋左手举着 B200 GPU,右手举着 H100此外,将两个B200 GPU与单个Grace CPU 结合在一起的 GB200,可以为LLM推理工作负载提供30倍的性能,并且显著提高效率。黄仁勋还强调称:“与H100相比,GB200的成本和能耗降低了25倍!关于市场近期颇为关注的能源消耗问题,B200 GPU也交出了最新的答卷。黄仁勋表示,此前训练一个1.8 万亿参数模型,需要8000 个 Hopper GPU 并消耗15 MW电力。但如今,2000 个 Blackwell GPU就可以实现这一目标,耗电量仅为4MW。在拥有1750亿参数的GPT-3大模型基准测试中,GB200的性能是H100的7倍,训练速度是H100的4倍。值得一提的是,B200 GPU的重要进步之一,是采用了第二代Transformer引擎。它通过对每个神经元使用4位(20 petaflops FP4)而不是8位,直接将计算能力、带宽和模型参数规模翻了一倍。而只有当这些大量的GPU连接在一起时,第二个重要区别才会显现,那就是新一代NVLink交换机可以让576个GPU相互通信,双向带宽高达1.8TB/秒。而这就需要英伟达构建一个全新的网络交换芯片,其中包括500亿个晶体管和一些自己的板载计算:拥有3.6 teraflops FP8处理能力。在此之前,仅16个GPU组成的集群,就会耗费60%的时间用于相互通信,只有40%的时间能用于实际计算。一石激起千层浪,“最强AI芯片”的推出让网友纷纷赞叹。其中英伟达高级科学家Jim Fan直呼:Blackwell新王诞生,新的摩尔定律已经应运而生。DGX Grace-Blackwell GB200:单个机架的计算能力超过1 Exaflop。黄仁勋交付给OpenAI的第一台DGX是0.17 Petaflops。GPT-4的1.8T参数可在2000个Blackwell上完成90天的训练。还有网友感叹:1000倍成就达成!Blackwell标志着在短短8年内,NVIDIA AI 芯片的计算能力实现了提升1000倍的历史性成就。2016 年,“Pascal”芯片的计算能力仅为19 teraflops,而今天Blackwell的计算能力已经达到了 20000 teraflops。相关文章:全程回顾黄仁勋GTC演讲:Blackwell架构B200芯片登场英伟达扩大与中国车企合作 为比亚迪提供下一代车载芯片英伟达进军机器人领域 发布世界首款人形机器人通用基础模型台积电、新思科技首次采用NVIDIA计算光刻平台:最快加速60倍NVIDIA共享虚拟现实环境技术将应用于苹果Vision Pro黄仁勋GTC演讲全文:最强AI芯片Blackwell问世 推理能力提升30倍 ... PC版: 手机版:

封面图片

NVIDIA B200 GPU加速器明年到来 功耗高达1000W

NVIDIA B200 GPU加速器明年到来 功耗高达1000W B100之后,还有更强大的升级版B200,一如现在H100、H200的关系。戴尔首席运营官兼副董事长在最近的一次会议中确认了B200的存在,发布时间在明年。他没有披露更具体的规格,比如升级之处,但声称戴尔有能力搞定单颗GPU 1000W的功耗,甚至不需要液冷,这无疑是在暗示B200的功耗将大幅提高。相比之下,H100 SMX版本的峰值功耗为700W。NVIDIA GTC 2024图形技术大会将于3月18-21日举行,必然会披露新一代GPU加速器的情况,甚至有可能正式宣布。 ... PC版: 手机版:

封面图片

单卡功耗可达1400W 黄仁勋:下代GPU服务器必须水冷

单卡功耗可达1400W 黄仁勋:下代GPU服务器必须水冷 戴尔此前的一次会议中确认,NVIDIA明年还会推出升级版B200 GPU,最高功耗可达1000W,甚至有说法称会有恐怖的1400W!NVIDIA目前的主力AI GPU H100和升级版H200最大功耗为700W,核心面积814平方毫米,均只需风冷。AMD MI300X则需要750W,但是面积也更大一些达到了1017平方毫米。现如今,服务器和数据中心使用浸没式液冷散热已经稀松平常,但也有很多专家对这种发展途径吃反对态度。Moor Insights & Strategy的创始人、CEO兼首席分析师Patrick Moorhead就明确提出,为了提高性能,并控制合理的功耗、发热,我们已经穷尽了手段,但接下来该怎么办?上液氮吗?是时候重新思考了。 ... PC版: 手机版:

封面图片

英伟达发布用于AI的"世界上最强大芯片"Blackwell B200 GPU

英伟达发布用于AI的"世界上最强大芯片"Blackwell B200 GPU NVIDIA 首席执行官黄仁勋在 GTC 现场直播中举起他的新 GPU(左边),右边是 H100。NVIDIA 表示,新的 B200 GPU 拥有 2080 亿个晶体管,可提供高达 20petaflops 的 FP4 算力,而 GB200 将两个 GPU 和一个 Grace CPU 结合在一起,可为 LLM 推理工作负载提供 30 倍的性能,同时还可能大大提高效率。NVIDIA 表示,与 H100 相比,它的成本和能耗"最多可降低 25 倍"。NVIDIA 声称,训练一个 1.8 万亿个参数的模型以前需要 8000 个 Hopper GPU 和 15 兆瓦的电力。如今,NVIDIA 首席执行官表示,2000 个 Blackwell GPU 就能完成这项工作,耗电量仅为 4 兆瓦。NVIDIA 表示,在具有 1750 亿个参数的 GPT-3 LLM 基准测试中,GB200 的性能是 H100 的 7 倍,而 NVIDIA 称其训练速度是 H100 的 4 倍。这就是 GB200 的样子。两个 GPU、一个 CPU、一块电路板NVIDIA 介绍说,其中一项关键改进是采用了第二代变压器引擎,通过为每个神经元使用四个比特而不是八个比特,将计算能力、带宽和模型大小提高了一倍(前面提到的 FP4 的 20 petaflops)。第二个关键区别只有在连接大量 GPU 时才会出现:新一代 NVLink 交换机可让 576 个 GPU 相互连接,双向带宽达到每秒 1.8 TB。这就要求 NVIDIA 打造一个全新的网络交换芯片,其中包含 500 亿个晶体管和一些自己的板载计算:NVIDIA 表示,该芯片拥有 3.6 teraflops 的 FP8 处理能力。NVIDIA 表示将通过 Blackwell 增加 FP4 和 FP6NVIDIA 表示,在此之前,由 16 个 GPU 组成的集群有 60% 的时间用于相互通信,只有 40% 的时间用于实际计算。当然,NVIDIA 还指望企业大量购买这些 GPU,并将它们包装成更大的设计,比如 GB200 NVL72,它将 36 个 CPU 和 72 个 GPU 集成到一个液冷机架中,可实现总计 720 petaflops 的 AI 训练性能或 1440 petaflops(又称 1.4exaflops)的推理性能。它内部有近两英里长的电缆,共有 5000 条独立电缆。GB200 NVL72机架上的每个托盘包含两个 GB200 芯片或两个 NVLink 交换机,每个机架有 18 个前者和 9 个后者。NVIDIA 称,其中一个机架总共可支持 27 万亿个参数模型。据传,GPT-4 的参数模型约为 1.7 万亿。该公司表示,亚马逊、Google、微软和甲骨文都已计划在其云服务产品中提供 NVL72 机架,但不清楚它们将购买多少。当然,NVIDIA 也乐于为公司提供其他解决方案。下面是用于 DGX GB200 的 DGX Superpod,它将八个系统合而为一,总共拥有 288 个 CPU、576 个 GPU、240TB 内存和 11.5 exaflops 的 FP4 计算能力。NVIDIA 称,其系统可扩展至数万 GB200 超级芯片,并通过其新型 Quantum-X800 InfiniBand(最多 144 个连接)或 Spectrum-X800 以太网(最多 64 个连接)与 800Gbps 网络连接在一起。我们预计今天不会听到任何关于新游戏 GPU 的消息,因为这一消息是在 NVIDIA 的 GPU 技术大会上发布的,而该大会通常几乎完全专注于 GPU 计算和人工智能,而不是游戏。不过,Blackwell GPU 架构很可能也会为未来的 RTX 50 系列桌面显卡提供算力。 ... PC版: 手机版:

封面图片

黄仁勋访问台湾 Hopper H200和Blackwell B100 GPU量产在即

黄仁勋访问台湾 Hopper H200和Blackwell B100 GPU量产在即 NVIDIA不仅在其人工智能产品组合中取得了突飞猛进的发展,而且该公司还在努力迎合各个地区的利益,尽管遇到了诸如美国新法规之类的挫折。我们昨天报道了黄仁勋对北京的访问,他不仅参加了与北京新年有关的庆祝活动,而且据说还与阿里巴巴和腾讯等几家中国客户举行了会议,向他们保证英伟达将继续留在这里。据透露,在访问中国之后,黄仁勋还决定前往台湾,拜访台积电和纬创等公司的主要供应商,以了解公司下一代 H200 和 B100 AI GPU 的量产进展。今年将标志着向新一代人工智能产品的过渡,这就是为什么 2024 年不仅对英伟达,而且对其他参与人工智能竞赛的公司来说都是"决定性的"一年。据预测,今年全球人工智能出货量有望大幅增长,预计将达到 35 万片左右,其中NVIDIA将占据相当大的份额。关于英伟达(NVIDIA)即将推出的产品,首先是其 Hopper H200 GPU,它配备了美光的 HBM3e 解决方案,显存容量达 141 GB,带宽高达 4.8 TB/s,与英伟达(NVIDIA)A100 相比,带宽增加了 2.4 倍,容量增加了一倍。在 Llama 2(700 亿参数 LLM)等应用中,与 H100 GPU 相比,这种新的内存解决方案使英伟达的人工智能推理性能提高了近一倍。下一个重磅产品是 Blackwell B100 AI GPU,在性能方面,它将通过采用芯片组设计,在每瓦性能方面带来决定性的提升。英伟达公司的下一代Hopper H200和Blackwell B100人工智能图形处理器预计将在2024年内亮相,据报道,由于Hopper在2024年的采用率较高,B100将被推迟到第四季度。对于整个科技行业来说,今年将是有趣的一年,尤其是人工智能的进步以及与之相关的市场。预计英伟达公司将在 3 月份的 GTC 2024 大会上公布更多有关人工智能和数据中心芯片的信息。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人