加州大学圣地亚哥分校研发可自愈阴极固态锂硫电池 倍增电动汽车续航

加州大学圣地亚哥分校研发可自愈阴极固态锂硫电池 倍增电动汽车续航 固态锂硫电池是一种可充电电池,由固体电解质、锂金属阳极和硫阴极组成。这种电池具有能量密度更高、成本更低的优点,有望成为目前锂离子电池的理想替代品。与传统锂离子电池相比,它们每公斤可储存两倍的能量,换句话说,它们可以在不增加电池组重量的情况下,将电动汽车的续航里程增加一倍。此外,由于使用了丰富且易于获取的材料,它们不仅经济上可行,而且更环保。然而,锂硫固态电池的开发历来受到硫阴极固有特性的困扰。硫不仅是一种不良的电子导体,而且硫阴极在充电和放电过程中还会发生明显的膨胀和收缩,导致结构损坏以及与固体电解质的接触减少。这些问题共同削弱了阴极传输电荷的能力,影响了固态电池的整体性能和使用寿命。为了克服这些挑战,加州大学圣地亚哥分校可持续电力和能源中心的研究人员领导的团队开发出了一种新型阴极材料:一种由硫和碘组成的晶体。通过在结晶硫结构中加入碘分子,研究人员将阴极材料的导电性能大幅提高了 11 个数量级,使其导电性能比单纯的硫晶体高出 1000 亿倍。阴极材料从棕色粉末熔化成深紫红色液体,从而愈合。图片来源:David Baillot/加州大学圣地亚哥分校雅各布斯工程学院这项研究的共同资深作者、加州大学圣地亚哥分校纳米工程教授兼可持续电力与能源中心主任刘平说:"我们对这种新材料的发现感到非常兴奋。硫的导电性能大幅提高令人惊喜,在科学上也非常有趣。"此外,这种新型晶体材料的熔点很低,只有 65 摄氏度(149 华氏度),比一杯热咖啡的温度还要低。这意味着在电池充电后,阴极可以很容易地重新熔化,以修复因循环而受损的界面。这是解决阴极和电解液之间的固-固界面在反复充电和放电过程中发生累积性损伤的一个重要特性。这项研究的共同第一作者、加州大学圣地亚哥分校雅各布斯工程学院纳米工程教授 Shyue Ping Ong 说:"这种硫-碘阴极提出了一个独特的概念,可以解决锂-S 电池商业化的一些主要障碍。碘恰到好处地破坏了将硫分子结合在一起的分子间键,从而将其熔点降低到了"金锁区"既高于室温,又足够低,阴极可以通过熔化定期重新修复。""我们的新型阴极材料的低熔点使得修复界面成为可能,这是这些电池长期以来一直寻求的解决方案,"该研究的共同第一作者周建斌说,他曾是刘的研究小组的纳米工程博士后研究员。"这种新材料是未来高能量密度固态电池的有利解决方案"。为了验证新型阴极材料的有效性,研究人员构建了一个试验电池,并对其进行反复充放电循环。电池在超过 400 次循环中保持稳定,同时保留了 87% 的容量。这项研究的合著者、本田美国研究所首席科学家克里斯托弗-布鲁克斯(Christopher Brooks)说:"这一发现有可能通过大幅延长电池的使用寿命,解决固态锂硫电池问世所面临的最大挑战之一。电池只需提高温度就能实现自我修复,这可以大大延长电池的总寿命周期,为固态电池在现实世界中的应用开辟了一条潜在的途径。"该团队正致力于通过改进电池工程设计和扩大电池规格,进一步推动固态锂硫电池技术的发展。"虽然要实现可行的固态电池还有很多工作要做,但我们的工作是重要的一步,"刘说。"我们在加州大学圣地亚哥分校的团队与我们在国家实验室、学术界和工业界的研究合作伙伴之间的合作使这项工作成为可能。"编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

UC San Diego:加州大学圣地亚哥分校的亲巴勒斯坦抗议者与警方发生冲突并阻拦了圣地亚哥警长的巴士,导致校园内发生大规模逮

UC San Diego:加州大学圣地亚哥分校的亲巴勒斯坦抗议者与警方发生冲突并阻拦了圣地亚哥警长的巴士,导致校园内发生大规模逮捕。 一些学生声称,校园内还发现了边境巡逻人员。 「边境巡逻队已进入校园。所有无证件或 DACA 学生应立即离开校园,」有人在 IG 上发布了一篇这样的帖子。 据报道,在学生们扎营之后,警方逮捕了 64 人,其中 40 人是学生

封面图片

吃瓜 Geisel 留学圈子惊曝大瓜 加州大学圣地亚哥分校(UCSD)Geisel图书馆解压门事件全员露脸无码版 众多女主这男的

吃瓜 Geisel 留学圈子惊曝大瓜 加州大学圣地亚哥分校(UCSD)Geisel图书馆解压门事件全员露脸无码版 众多女主这男的艳福不浅堪比冠希老师了 29部 #吃瓜 #Geisel @ofyydss

封面图片

《卫报中国访问团摄影集.Guardian Tour of China.1973年.加州大学圣地亚哥分校图书馆藏》 | 简介:卫报

《卫报中国访问团摄影集.Guardian Tour of China.1973年.加州大学圣地亚哥分校图书馆藏》 | 简介:卫报中国访问团摄影集.Guardian Tour of China.1973年.加州大学圣地亚哥分校图书馆藏这本书带给读者一个新鲜的视角,无论是在探索历史、社会还是文化方面,它都能为你提供独特的深度和思考。每一页都充满了智慧和启发,是对知识渴望者的不二之选。 | 标签:#书籍 #卫报 #阅读 | 文件大小:NG | 链接:

封面图片

固态电池研发之难 连宁王都连声叫苦

固态电池研发之难 连宁王都连声叫苦 近年来,随着海内外多家企业接连给出固态电池的量产时间点,业内对固态电池走向落地应用的期望值有所提升,二级市场也纷纷作出反应,与固态电池相关的概念股今年接连涨停。为何行业与资本市场对此纷纷看好这项技术?作为动力电池的新形态,其是否会替代目前主流的三元锂电池和磷酸铁锂电池?动力电池的“终极路线”所谓固态电池,简单理解即一种使用固体电极和固体电解质的电池。现有的动力锂电池材料体系包含碳/硅负极、多孔隔膜以及液体电解质,通过锂离子的移动而产生电流。而全固态电池是一个完全致密的状态,采用固态电解质和固态隔膜,碳/硅负极改为金属锂负极,充电时,锂金属会沉积在负极上,在放电的过程中溶解。基于这种材料体系的转变,固态电池有着液态电池无法企及的优势。例如,固态电池更为稳定,不易泄漏、不易燃烧,大大降低了电池起火爆炸的风险,安全性更高。另外,由于能量密度更高,可达到 400Wh/kg 以上(作为对比,磷酸铁锂电池的能量密度一般在 100Wh/kg~180Wh/kg,三元锂电池的能量密度通常在 150Wh/kg~250Wh/kg),其在性能表现上也优于液态电池,充电速度更快(最高可超过 10C)、续航里程更长。同时,全固态电池的电解质在 -30°C 和 100°C 的范围内都不会凝固,不会气化,这意味着冬天在寒冷地区不用担心续航问题,也不需要很复杂的热管理。这也就不难理解为何固态电池备受业界推崇,成为海内外车企争相布局的领域。从全球厂商的研发路径来看,固态电池主要有聚合物、氧化物和硫化物三种研发路线。不过,目前尚未有任何一种技术路径为绝对性方向,而是都处在探索阶段。“无论是聚合物、氧化物还是硫化物,目前很难有一种电池的所有性能都比别的电池有优势,而是各有优缺点。”广汽研发人员告诉虎嗅汽车。在广汽看来,未来固态电池的终极形态会是多元的复合体系,于是广汽全固态电池基于两条路线并行推进开发一个是以硫化物为主的复合体系,另一个是聚合物为主的复合体系。宁德时代同样认为没有一种固态电解质是十全十美的,其更为看好硫化物技术路线,认为其能够更快走向量产。同样在硫化物全固态电池领域布局的还有丰田,但双方在硫化物空气稳定性和制造工艺上采用了不同的策略。全球各家厂商都希望攻克全固态电池,但目前尚未有真正实现量产攻坚的玩家。需要指出的是,虽然近年来行业内有部分车企宣称用上了固态电池,但实际上是半固态电池,而非并非真正的固态电池形态。“根据行业内规则,一般是按液态电解质占电芯的比重来分:液态(25wt%)、半固态(510wt%)、准固态(05wt%)和全固态(0wt%)。”广汽研发人员告诉虎嗅汽车,“不管是液态电池还是半固态电池,只要电池内部存在电解液,一旦破损泄漏都会有短路起火的风险,与当前常规液态锂离子电池并无本质差异。”固态电池,可望不可及固态电池百般好,但无奈这是块“饼”。较早一批从事固态电池研发的厂商已经在这条赛道上走了十多年,丰田从 2012 年开始布局研发,宁德时代也差不多在这一时期启动研究,但都没能将固态电池推到量产阶段。从国内外车企透露的量产时间点来看,固态电池的产业化时间大概在 2027-2030 年。需要厘清的是,“上车不等于大规模量产”,推出产品形态到大规模量产落地之间还存在多方面的技术攻坚。“五年后肯定会有固态电池的车出来,再过三五年会大面积铺开。”吉利研究院专家告诉虎嗅汽车,但考虑到目前各家车企对固态电池的重视程度以及技术快速推进,量产时间可能提前。固态电池研发之难,连宁王都连声叫苦。曾毓群曾在公开场合表示,“宁德时代已经在这方面投资了 10 年,固态电池只有在使用新型化学材料、负极电极使用纯锂金属的情况下才会有很大优势,要将这种电池推向市场还有很多困难。”首先是电解质材料选择上,以相对主流的硫化物固态电解质需要的硫化锂为例,后者化学性质不稳定,与空气、水反应都会生成有毒化合物,生产环境控制要求严苛,量产困难,由于与目前的电池材料体系差别巨大,固态电池缺乏成熟的材料供应商。在正负极材料上,由于硅/碳负极体积易膨胀大不适用于固态电池,固态电池的正负极材料通常会选择一些能提高能量密度的金属,而锂金属负极现在还不成熟。在界面工程与稳定性上,固态电池中的电解质与正负极之间的界面问题也是一大挑战。由于采用固体电极和固体电解质,其有效接触能力较弱,会造成影响电池性能的界面阻抗。另外,由于固体电解质导电率差、采用锂金属易发生枝晶生长存在安全风险等问题,这些亟待攻关的技术难点。再者,对于量产和普及来说,全固态电池还面临着成本的问题,包括材料成本和制造成本。据中邮证券测算,目前固态电池较液态电池成本高出 30% 以上。材料层面,固态电解质目前仍难以做到轻薄化,用到的部分稀有金属原材料价格较高,叠加为高能量密度使用的高活性正负极材料尚未成熟,固态电解质和正负极成本都不低。在生产层面,固态电池的生产工艺相对复杂,成本也较高。可以预见,全固态电池短期内难以实现大规模的商业化。从理论层面来看,固态电池比液态电池有着多方面的优势,但这项被称为“动力电池领域的珠穆朗玛峰”的技术还仅是将来时形态,即使在三五年内能够有技术突破,但要形成替代,还需突破成本关口。从产业态度来看,未来 10 年无疑是全固态电池研发的关键机遇期。但对于一项新兴技术,更重要的是聚焦于技术层面的攻坚,而不是虚炒营销概念,将其作为宣传和推起资本热度的手段。 ... PC版: 手机版:

封面图片

10分钟充满电 哈佛全华班团队带来固态电池新突破

10分钟充满电 哈佛全华班团队带来固态电池新突破 什么样的固态电池当前常见的锂离子电池,负极多为石墨材料,优点是工艺成熟,运用广泛,但缺点是理论比容量不高,为372mAh/g,商业化后大概会更低一点。这也是为什么如今的锂离子电池,特别是液态锂离子电池想要增加能量密度、续航里程,往往有个上限。因此,能量密度更高的固态电池一直被认为是锂离子电池的终极形态,是当下行业发展的方向。而固态电池一大热门负极材料就是锂,理论比容量高达3860mAh/g,并且拥有最低的电化学势(-3.04V),能更有效吸收和释放电子,也能对应更广泛的正极材料。另一种负极材料硅,虽然能量比容量更高(4200mAh/g),但在充放电中会产生剧烈体积变化,容易导致电池失效。但使用锂电子作为负极有一个最大问题就是锂枝晶,也是电池短路失效、热失控等严重后果的元凶。虽然固态电池使用固态电解质,对于锂枝晶的生长有一定抑制作用,但各类固态电解质的抑制效果不一,什么样的固态电解质是最优解现在也没个定论。并且,使用什么样的固态电解质也是目前固态电池热门的研究方向之一。对此,该论文的哈佛团队使用了一种独特方式:在锂金属负极上,增加一层由微米级硅元素(Si)和石墨(G)形成的复合材料的保护层,由此诞生了性能更优的固态电池。团队使用镍钴锰(NMC83),以及SiG复合材料保护的锂金属制作了一个固态电池包,尺寸为28X35平方毫米,远远大于一般实验室使用的纽扣电池的大小(约10倍-20倍)。在25MPa的工作压力下,该固态电池在5C的充电和放电倍率下循环,初始容量为125mAh/g。如图所示,2000次充放电循环后容量保持率为92%,3000次循环后为88%,6000次循环后仍然为80%,这个表现优于市场上其他的软包电池。并且,在不考虑压力夹具的情况下,该软包电池的能量密度已经达到218Wh/kg,超过当下主流大部分锂离子电池的能量密度。并且论文作者表示,未来还能通过减小隔板厚度、降低工作压力以及增加阴极负载进一步提升能量密度。以上这些数据已经充分证明了该SiG复合材料加入后,固态电池包具有的高性能。实际上,在固态电池中植入人工固态电解质界面层(SEI),提升固态电池的性能并不是什么新鲜事,那么为什么这样的SiG材料就能实现性能突破?材料关键:微米级硅颗粒众所周知,锂离子电池充放电的过程,就是电池阳极反复得到和失去锂离子的过程(或者说嵌入和脱嵌)。也就是说,如何在电池阳极快速、均匀、稳定地镀上或剥离锂,是该电池能否商业化的关键。该团队在实验过程中发现,在负极锂上增加由微米尺寸的硅构成的复合材料,恰好可以满足这一要求。论文通过透射电子显微镜(TEM)和能量色散谱(EDS)等技术发现,在电池循环过程中,锂离子只和浅层的硅发生反应:同时硅颗粒的外形没有明显变化:这意味着微米级的硅颗粒并不会由于硅化反应膨胀,锂化反应得到抑制;同时也不会提供有利于锂枝晶生长的环境,或者说抑制锂枝晶的生长。并且,在这种材料中,硅-石墨层提供了一种活跃的3D支架,颗粒之间的空隙区域有利于锂离子的嵌入和脱嵌,能有效提高电极容量,进一步提高电池的总体容量。论文作者使用硫化电解质,和由SiG复合材料保护的锂金属制造的固态电池,放电容量达到5600mAh/G,比理论容量4200mAh/G高出很多。并且,也由于锂离子的电镀和剥离可以在平坦的硅表面上快速发生,电池只需要约10分钟就可充满电。另外,论文中还对材料的锂化反应提出了一种新的衡量标准:每单位有效模量(Keff)的锂化组成(lithiation composition per Kcrit)。论文中指出,每一种材料都有一个相应的临界模量,超过这个模量,锂化反应就会得到有效抑制。因此在固态电池的材料选择中,可以选择临界模量更低的那种。作者分析了59524种材料条目,发现除了硅以外,银和镁合金也是具有前景的负极材料。论文作者简介本文团队为全华班,五位作者均来自哈佛大学约翰·保尔森工程与应用科学学院,Li Xin实验室。其中Ye Luhan和Lu Yang对本文作出同等贡献。Ye Luhan在2022年取得哈佛大学博士学位,研究方向包括固态电池、锂金属阳极、电化学等。Lu Yang同样在2022年在哈佛大学获得材料工程专业研究生学位(Postgraduate Degree),在这期间还担任助理研究员。Lu Yang本科毕业于华中科技大学电子封装技术专业,硕士和博士都在圣路易斯华盛顿大学就读,分别是电气工程专业和材料科学与工程专业。第三位作者Wang Yichao,2017年本科毕业于清华大学材料科学专业,后直博哈佛,在2022年获得材料科学博士学位,现在是哈佛大学艺术与科学研究生院的助理研究员。第四位作者Li Jianyuan是Li Xin实验室的访问学者。本文的通讯作者,Li Xin,目前是哈佛材料科学专业副教授,同时是该实验室首席研究员。Li Xin在2003年毕业于南京大学物理专业,后在宾夕法尼亚大学取得材料科学与工程博士学位,还在加州理工和麻省理工当过博士后研究员。2015年Li Xin加入哈佛,后建立Li Xin实验室,之前曾开发出一款寿命周期达1万次、3分钟可充满电的固态电池。不仅在学术研究等方面拥有成绩,2021年,Li Xin还和本文作者之一Ye Luhan等人共同创建Adden Energy,专注将实验室结果推进量产落地。目前,Ye Luhan是Adden Energy的CTO,Lu Yang是Adden Energy的聚合物与电池科学家。上述的SiG材料技术也授权给了Adden Energy,推进该技术的量产落地。据Li Xin透露,公司已经扩大该技术的规模,能够制造出智能手机大小的软包电池。对于这项新的技术突破,有网友表示非常不错。他认为这就是在朝正确的方向前进,电池的续航里程没有那么重要,充电时间才是关键。不过也有网友指出,如此短的充电时间则意味着更高的充电功率。比如要在5分钟内要让容量100kWh的电池充满电,需要1.2MW的充电功率,还不包括电路损耗,当前的充电基础设施并不能满足这样的需求,所以拥有光伏装置的慢充站才是更好的解决方案。 ... PC版: 手机版:

封面图片

欣旺达携手松山湖材料实验室 共建固态电池公共研发平台

欣旺达携手松山湖材料实验室 共建固态电池公共研发平台 7 月 5 日,欣旺达子公司欣旺达动力科技股份有限公司与松山湖材料实验室在东莞正式签署《关于共建东莞松山湖固态电池公共研发平台框架协议》。这标志着,欣旺达动力与松山湖材料实验室未来将在固态电池领域开展深度合作,共同推动固态电池技术产业的商业化发展与市场化应用。松山湖材料实验室是广东省第一批省实验室之一,也是大湾区综合性国家科学中心先行启动区(松山湖科学城)建设的重要科研平台。能源材料是松山湖材料实验室主要研究方向之一,目前,实验室在新一代正极材料、负极材料、电解质材料和半固态电池领域已形成技术优势并开始向行业提供中试产品。由中国科学院物理研究所和宁波材料所等研究团队组成的联合团队,已初步突破全固态电池等关键工艺技术。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人