科学简单点:什么是量子力学?

科学简单点:什么是量子力学? 在这段"科学 101:什么是量子力学"的视频中,阿贡材料科学部学者凯瑟琳-哈蒙(Katherine Harmon)解释了什么是量子力学。量子力学是一种理论,涉及物质、能量和光的最基本位以及它们相互作用构成世界的方式。这一具有里程碑意义的理论起源于 20 世纪初,在 21 世纪被广泛应用于现实世界。阿贡科学家哈蒙和许多其他科学家在实验室中应用量子力学,正在开发有朝一日能够改变社会和我们对宇宙认识的技术。量子传感器可以检测到以前检测不到的癌细胞。量子互联网可以确保信息和数据通信不受黑客攻击。量子计算机可以解决经典计算机无法解决的复杂问题。量子理论还将继续推进我们对宇宙的认识,从原子深处错综复杂的动力学,到宇宙诞生这样宏大的宇宙事件。20 世纪初,科学家们开始发展量子力学,以解释一系列实验结果,这些实验结果无法用其他任何解释来解释。如今,科学家们利用这一理论创造出强大的技术无法破解的信息通信、更快的药物发现以及手机和电视屏幕上更高质量的图像。那么,什么是量子呢?从更广泛的意义上讲,"量子"一词可以指某种事物的最小可能量。量子力学领域研究的是最基本的物质、能量和光,以及它们相互作用构成世界的方式。与我们通常思考世界的方式不同,我们想象事物分别具有粒子或波的特性(例如棒球和海浪),但这种概念在量子力学中行不通。根据不同的情况,科学家可能会观察到同一个量子物体具有粒子或波的特性。例如,光不能被认为只是光子(一种光粒子)或只是光波,因为我们可能在不同的实验中观察到这两种行为。平日里,我们看到的事物每次只有一种"状态":在这里或在那里,移动或静止,正面朝上或反面朝上。在量子力学中,物体的状态并不总是那么简单明了。例如,在我们确定一组量子物体的位置之前,它们可能存在于一个或多个位置的叠加(或一种特殊的组合)中。不同的可能状态就像池塘中的波浪一样相互组合和干扰,只有在我们观察之后,物体才会有一个确定的位置。叠加是使量子计算机成为可能的主要特征之一,因为它使我们能够用新的和有用的方式来表示信息。另一种有趣的量子行为是隧穿,量子物体(如电子)有时可以穿过原本无法穿过的障碍。之所以会发生这种情况,是因为叠加允许电子有很小的几率出现在障碍的另一侧。量子隧道技术可应用于闪存设备、功能强大的显微镜和量子计算机等领域。当量子物体相互作用时,它们通过一种叫做纠缠的联系彼此相连。即使物体之间相隔很远,这种联系也能保持。爱因斯坦称之为"距离的幽灵作用"。科学家们正在利用它进行超安全通信,它也是量子计算的一个基本特征。在美国能源部(DOE)的阿贡国家实验室,科学家们利用世界一流的专业知识和研究设施,开发用于存储、传输和保护信息的量子技术,并研究我们的宇宙,从原子内部深处的复杂动力学到宇宙诞生这样宏大的事件。阿贡还领导着 Q-NEXT(美国能源部国家量子信息科学研究中心),该中心致力于开发量子材料和器件,并将量子技术的力量用于通信。资料来源:阿贡国家实验室什么是量子信息科学?利用原子尺度上的反直觉行为,我们可以在实用尺度上为信息科学带来强大变革。科学家们正在争分夺秒地开发能够存储、传输、操纵和保护信息的量子系统。量子比特是量子计算和其他量子信息系统的基本组成部分。它们类似于经典计算机中的比特,要么是 0,要么是 1。量子比特的奇特之处在于,它们可以同时为 0 和 1。这种重叠状态极大地增强了量子计算机的性能。量子比特本身可以有多种不同的形式电子、光粒子,甚至是高度结构化材料中的微小缺陷。科学家们正在努力设计能在量子态中保持信息数秒("相干性")并能与其他量子比特连接("纠缠")的量子比特。量子技术可以改变国家和金融安全、药物发现以及新材料的设计和制造,同时加深我们对宇宙的理解。编译自:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能? ... PC版: 手机版:

相关推荐

封面图片

吴金闪教授:量子力学无基础入门

吴金闪教授:量子力学无基础入门 描述:吴金闪教授的量子力学无基础入门课程是一门为初学者设计的量子力学入门课程。该课程从基础的物理现象出发,深入浅出地讲解量子力学的核心概念,帮助学生理清神秘量子现象,理解量子力学的基本原理和应用。在课程中,吴金闪教授会介绍量子力学中的一些核心概念,如不确定性原理、波函数和量子态、超位置和量子纠缠、量子隧道效应等。不确定性原理指出,在测量微观粒子的位置和动量时,无法同时准确确定两者的数值,即粒子的位置和动量具有不确定性。波函数是描述微观粒子状态的数学函数,通过它可以计算粒子在不同状态下的概率分布。而量子态则是描述系统整体状态的概念,由波函数完全确定。 链接:https://pan.quark.cn/s/d24f03312d67 大小:3.0GB 标签:#学习 #量子力学 #基础 #入门 #吴金闪教授 #quark 频道:@yunpanshare 群组:@yunpangroup

封面图片

弯曲的现实:南极冰川中的爱因斯坦与量子力学

弯曲的现实:南极冰川中的爱因斯坦与量子力学 南极洲星空下的冰立方实验室。图片来源:马丁-沃尔夫,冰立方/NSF要解释物质和光在亚原子尺度上的行为,就必须理解量子力学的随机性。几十年来,科学家们一直试图将这两个研究领域结合起来,实现对引力的量子描述。这将结合与广义相对论相关的曲率物理学和与量子力学相关的神秘随机波动。美国得克萨斯大学阿灵顿分校的物理学家在《自然-物理》杂志上发表了一项新研究报告,他们利用设置在南极冰川深处的粒子探测器探测到的超高能量中微子粒子,对这两种理论之间的界面进行了深入的新探索。DOM 降入阵列,开始采集数据。资料来源:马克-克拉斯伯格,冰立方/NSF物理学副教授本杰明-琼斯(Benjamin Jones)说:"将量子力学与引力理论统一起来的挑战仍然是物理学中最紧迫的未决问题之一。如果引力场的行为方式与自然界中的其他场类似,那么它的曲率就应该表现出随机量子波动。"琼斯和UTA研究生阿克希玛-内吉(Akshima Negi)、格兰特-帕克(Grant Parker)是冰立方国际合作团队的成员,该团队包括来自美国各地以及澳大利亚、比利时、加拿大、丹麦、德国、意大利、日本、新西兰、韩国、瑞典、瑞士、台湾和英国的300多名科学家。德克萨斯大学阿灵顿分校物理学副教授本杰明-琼斯。图片来源:德克萨斯大学阿灵顿分校为了寻找量子引力的特征,研究小组在南极洲南极附近一平方公里的范围内放置了数千个传感器用于监测中微子,中微子是一种电荷中性、没有质量的不寻常但却非常丰富的亚原子粒子。研究小组对 30 多万个中微子进行了研究。他们想看看这些超高能量粒子在地球上长途旅行时,是否会受到时空中随机量子波动的干扰,如果引力是量子力学的,那么这种波动是意料之中的。内吉说:"我们通过研究冰立方天文台探测到的中微子的味道来寻找这些波动。我们工作的结果是,测量结果比以前的测量结果灵敏得多(对某些模型而言,灵敏度超过一百万倍),但却没有发现预期的量子引力效应的证据。"没有观测到时空的量子几何,这有力地说明了在量子物理学和广义相对论交界处运行的仍然未知的物理学。琼斯说:"这项分析是UTA近十年来为冰立方天文台所做贡献的最后一章。我的小组现在正在进行新的实验,旨在利用原子、分子和光学物理技术了解中微子质量的起源和价值。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学简单点:什么是纳米科学?

科学简单点:什么是纳米科学? "纳米"一词的意思是某物的十亿分之一。纳米科学中的"纳米"指的是纳米,即十亿分之一米(1 米 = 3.3 英尺)。那到底有多小?在这段"科学 101:什么是纳米科学"的视频中,助理科学家徐杰解释了什么是纳米科学,以及阿贡纳米材料中心(CNM)如何应用纳米科学。纳米科学是一门研究微小到只有最精密的高科技显微镜才能看到的尺寸的科学。它是所有科学中最热门的话题之一。每年,数百名科学家从世界各地来到 CNM,研究原子和分子尺度的材料特性。通过推进我们对这种尺度的材料结构的理解,阿贡的科学家们(如徐和许多其他科学家)对纳米尺度的特性以及如何将它们用于实际用途有了更深入的了解。凭借这些知识,他们正在设计和制造下一代材料。这些材料将带来可持续的绿色技术、更高效的大规模制造、新药物、对阿尔茨海默氏症和帕金森氏症等脑部疾病的创新治疗、改良的电池材料、更好的电子设备等。假设你身处爱丽丝梦游仙境的世界,偶然发现瓶子里有一种神奇的药水,瓶子上写着"DRINK ME"。你喝了一口,就缩小了 1500 倍。你现在的大小只有一毫米,只有小雨滴那么高。好奇的你又喝了一口魔药,体积缩小了一千倍。你现在只有一微米大小,和雨滴中漂浮的细菌差不多大。你再喝一口,又缩小了一千倍。在达到纳米级大小后,你现在只比由两个氢原子和一个氧原子组成的单个水分子大三倍左右。在一颗雨滴中,有超过六千万亿个水分子。六千万是数字 1 后面加 21 个 0。由于所有材料都是由原子和分子构成的,因此这种超微尺度的科学为社会带来了许多益处。而相同的原子和分子以不同的方式结合在一起,可以产生无穷无尽的特性。它们可以变得更柔软或更坚固,可以更好地导热或导电,可以以不同的方式反射光线,等等。在阿贡国家实验室,纳米材料中心(CNM)是美国能源部在纳米科学和技术领域的五个中心之一。通过推进我们对材料、分子和化学过程在这一尺度上的理解,这些中心的科学家们对如何产生可用于实际用途的特性有了更深入的了解。利用这些知识,他们正在设计和制造下一代材料和分子。这些研究将带来可持续绿色技术、更高效的大规模制造、新药物、阿尔茨海默氏症和帕金森氏症等脑部疾病的治疗、改良电池材料、新型量子信息和传感设备等。资料来源:阿贡国家实验室只有最高科技的显微镜才能看到的结构。纳米结构的一个或多个尺寸比人的头发丝粗细小十万倍,比金原子或水分子大不了多少。纳米结构的种类数不胜数。20 世纪 80 年代,随着降压球的发现,人们对纳米结构产生了浓厚的兴趣。BUCKYBALL以建筑师巴克明斯特-富勒(Buckminster Fuller)的名字命名,由 60 个碳原子连接成足球形状。它的合成促成了碳纳米管和石墨烯的发明。石墨烯这种纳米材料是由厚度不到一纳米的碳原子组成的平面薄片。尽管超薄,石墨烯的强度却比钢铁高出 200 倍。碳纳米管科学家可以将石墨烯卷起形成纳米管。这种形状在许多应用中都很有吸引力,如制造超强纤维和织物。它还可作为添加剂用于强化航空航天飞行器。编译自:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力? ... PC版: 手机版:

封面图片

科学简单点:什么是自主发现?

科学简单点:什么是自主发现? 在本系列报道中,计算机科学家凯西-斯通(Casey Stone)和阿贡国家实验室纳米材料中心主任伊尔克-阿尔斯兰(Ilke Arslan)将为我们介绍自主发现的内幕。自主发现是一个利用机器人技术、人工智能和机器学习的过程,以前所未有的速度为世界带来科学突破。自主发现正在彻底改变人们从事科学研究的方式。展望未来,这些过程将帮助科学家找到解决方案,使人类更安全、更健康、更能抵御气候变化的影响。假设你遇到了塑料污染这样的问题,你需要一种更容易回收或再利用的新型塑料。可能有效的聚合物有成千上万种,而且在测试过程中可能会涉及有害化学物质。在过去,我们可能需要几名研究人员在实验室工作台同时测试一种聚合物。而这一过程将耗时数年。通过自主发现,人类研究人员将问题交给了机器人和人工智能。研究人员使用一种叫做机器学习的方法,用庞大的数据集来训练人工智能。这就为人工智能提供了我们已经知道的有关塑料回收、化学过程和潜在聚合物结构的所有信息。人工智能利用这些信息做出最佳决策,决定下一步运行哪些实验。机械臂和采样机每天 24 小时运转,让研究人员安全地远离化学品或其他潜在风险。通过机器学习,人工智能会变得越来越聪明,寻找新的模式和新的实验。人类科学家可以自由地使用他们富有创造力的大脑袋来解释最有趣的结果并采取行动。自主发现将帮助科学家在几天或几周内找到复杂问题的解决方案,而不是几年或几辈子。人类的智慧和想象力仍然是这一创新的核心。阿贡的科学家和技术人员正在寻找创造性的方法来应用自主发现的工具:我们正在创建实验室的"数字孪生体"。这些虚拟现实模型可以帮助研究人员测试机器,并找出在现实生活中的生物和化学实验室安装设备的最佳方法。我们正在探索从抗药性细菌的新疗法到植物如何在土壤中储存碳等一切问题。我们正在构建和解构聚合物链,以找到塑料回收和再循环的新方法。我们正在使用一些世界上最快的超级计算机来运行人工智能和处理来自大规模实验的数据。自主实验室正以前所未有的速度、效率和准确性,帮助将科学解决方案带入我们的生活。这不仅将彻底改变我们从事科学研究的方式,还将推动我们进入一个全新的发现时代。资料来源:阿贡国家实验室自主发现这种新的科学方法将以前所未有的速度带来新的发现。人脑是一台神奇的科学解题机器,但在人类研究人员需要进食或睡觉之前,人体只能解决这么长时间的问题。当今最大的挑战,如气候变化、新出现的疾病和塑料污染,不会等我们去吃个三明治或打个盹。我们现在就需要答案。这就是科学家们从机器人技术、人工智能(AI)和机器学习中获得帮助的原因。我们定义一个问题。人工智能利用机器人系统识别、设置并运行数百个实验,这些机器人系统可以全天候处理问题。通过机器学习,人工智能会变得越来越聪明,寻找新的模式和新的实验。人类科学家可以自由地使用他们富有创造力的大脑袋来解释最有趣的结果并采取行动。自主发现将以 100 倍甚至 1000 倍的速度为我们带来解决方案。编译自:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学?科学简单点:什么是暗物质和暗能量?科学简单点:什么是 X 射线光源? ... PC版: 手机版:

封面图片

科学简单点:什么是暗物质和暗能量?

科学简单点:什么是暗物质和暗能量? 人类对天空的研究已有数千年的历史,而在上个世纪,科学家们才真正开始了解宇宙是如何在一种叫做"万有引力"的力量影响下运动和变化的。万有引力影响着万物,不仅包括物质(科学术语),还包括光。它把我们的身体拉向地球,也在恒星和星系之间的遥远距离上发挥作用。在这段"科学101"视频中,博士后研究员吉莉安-贝尔茨-莫尔曼(Gillian Beltz-Mohrmann)和弗洛里安-凯鲁佐雷(Florian Kéruzoré)将探讨科学界的两大谜团:暗物质和暗能量。这些奇怪的影响因素似乎正在以意想不到的方式将宇宙拉伸开来,并将物质聚集在一起。它们加在一起占宇宙的 95%,但由于我们看不见、摸不着,所以不知道它们是什么。全球各地的研究人员,包括美国能源部阿贡国家实验室的科学家,正在通过大型宇宙学调查、粒子物理实验以及先进的计算和模拟,研究暗物质和暗能量的本质。引力在星系的形成和移动过程中起着至关重要的作用。随着科学家对宇宙了解的加深,他们发现除非存在大量看不见的物质比我们尚未发现的物质还要多得多否则星系的许多行为都是不合理的。这种看不见的物质或者说暗物质会产生额外的引力。如果它不存在,有些星系就会飞散,有些星系根本就不会形成。这张图展示了一个真实的例子,说明暗物质如何使螺旋星系的外部区域比只受可见物质引力影响的星系旋转得更快。这种差异表明暗物质的存在,施加了额外的引力。资料来源:阿贡国家实验室我们称它为"暗"是因为我们看不见它。与可见物质(我们能看到的物质,包括恒星、行星、水等)不同,它不会释放或吸收光线,也不会与其他物质相互作用,除非通过引力。我们知道它应该在哪里,但当我们观察时却什么都没有。这就像看到池塘里的涟漪,却看不到是什么造成的。与此同时,另一些东西正在推动宇宙以越来越快的速度膨胀。据我们所知,宇宙从 138 亿年前开始就一直在膨胀。天体之间的空间不断增大,就好像空间本身被拉伸开来,就像气球充气时的表面一样。科学家本以为这种膨胀的速度会随着时间的推移而减慢,但他们却发现了相反的情况。大约 50 亿年前,宇宙膨胀的速度开始加快。我们不知道是什么导致了这种加速膨胀,但我们把它命名为暗能量。来自暗物质的引力可以弯曲从遥远星系发出的光线,导致它们的图像在到达我们的望远镜时出现扭曲。这种现象被称为引力透镜,它揭示了暗物质的存在,即使我们看不到它。资料来源:阿贡国家实验室据科学家所知,可见物质只占宇宙的 5%。暗物质和暗能量据信分别占另外的 27% 和 68%。换句话说,我们所熟知的可见物质根本无法解释宇宙绝大部分物质的性质。那么,科学家们是如何试图解开这个谜团的呢?什么是暗物质和暗能量?为了找出答案,我们需要数据,而且是大量的数据。为了收集这些数据,科学家们建造了巨型望远镜和照相机。其中包括外太空的哈勃太空望远镜和詹姆斯-韦伯太空望远镜;南极洲的南极望远镜;亚利桑那州的暗能量光谱仪;以及智利的暗能量勘测和即将建成的维拉-C-鲁宾天文台。宇宙主要由暗能量和暗物质组成。可见物质(我们能看到的一切,包括恒星和行星)只占宇宙的 5%左右。科学家们正在研究这未知的 95% 的性质。图片来源:阿贡国家实验室这些灵敏的仪器对天空进行勘测,以揭示星系在宇宙中的位置和移动情况。超级计算机帮助科学家对宇宙进行详细模拟,并分析来自望远镜的数据。除了在天空中寻找答案,科学家们还在建造敏感的探测器,以直接在地球上寻找暗物质。美国能源部阿贡国家实验室的研究人员通过参与这些大型宇宙学调查、粒子物理实验以及使用先进的计算和模拟,为暗物质和暗能量的研究做出了贡献。来自这些测量和模拟的信息帮助科学家绘制出暗物质存在的地图,并提供了有关暗能量性质的线索。随着我们的望远镜、超级计算机和其他仪器越来越先进,我们发现越来越多的证据表明,我们遗漏了一些重大的东西,科学家们正在努力了解它可能是什么。阿贡科学家们的工作正在让世界离揭开这些宇宙之谜越来越近。编译自:ScitechDaily相关文章:科学简单点:什么是超级计算?科学简单点:什么是人工智能?科学简单点:什么是量子力学?科学简单点:什么是水力发电?科学简单点:什么是核能?科学简单点:什么是气候复原力?科学简单点:什么是纳米科学? ... PC版: 手机版:

封面图片

能源科学家解释了导致金薄膜光致发光的量子力学效应

能源科学家解释了导致金薄膜光致发光的量子力学效应 1969 年,科学家们发现所有金属都会在一定程度上发光,但在这之后的数年中,人们一直未能清楚地了解这种现象是如何发生的。在纳米级温度测绘和光化学应用的推动下,人们对这种发光现象重新产生了兴趣,并再次围绕其起源展开了讨论。但直到现在,答案仍不明确。工程学院能源技术纳米科学实验室(LNET)主任 Giulia Tagliabue 说:"我们开发出了非常高质量的金属金膜,这使我们处于一个独特的位置来阐明这一过程,而不受以往实验的干扰因素影响。"在最近发表于《光:科学与应用》(Light:Science and Applications)的研究中,Tagliabue 和 LNET 团队将激光束聚焦在极薄(介于 13 纳米和 113 纳米之间)的金膜上,然后分析了由此产生的微弱光晕。他们的精确实验所产生的数据是如此详细,又是如此出人意料,以至于他们与巴塞罗那科技学院、南丹麦大学和美国伦斯勒理工学院的理论家合作,重新研究并应用量子力学建模方法。光致发光是由电子及其带相反电荷的对应物(空穴)在光的作用下的特定行为方式所决定的。这也让他们首次在金中建立了关于这种现象的完整、完全定量的模型,该模型可应用于任何金属。Tagliabue 解释说,研究小组利用一种新型合成技术生产的单晶金薄膜,研究了金属越来越薄时的光致发光过程。她说:"我们观察到某些量子力学效应在高达约 40 纳米的薄膜中出现,这出乎我们的意料,因为对于金属来说,通常要到 10 纳米以下才会出现这种效应。"这些观测结果提供了有关金中光致发光过程确切发生位置的关键空间信息,而这正是将金属用作探针的先决条件。研究的另一个意外成果是发现金的光致发光(Stokes)信号可用于探测材料自身的表面温度,这对从事纳米级研究的科学家来说是一大福音。"对于金属表面的许多化学反应,人们一直在争论这些反应发生的原因和条件。温度是一个关键参数,但在纳米尺度测量温度非常困难,因为温度计会影响测量结果。因此,利用材料本身作为探针来探测材料具有巨大的优势,"Tagliabue 说。研究人员相信,他们的发现将使人们能够利用金属对化学反应,尤其是涉及能源研究的化学反应获得前所未有的详细了解。金和铜(LNET 的下一个研究目标)等金属可以引发某些关键反应,比如将二氧化碳(CO2)还原成太阳能燃料等碳基产品,太阳能燃料可以将太阳能储存在化学材料中。该研究的第一作者、LNET 博士后艾伦-鲍曼(Alan Bowman)说:"为了应对气候变化,我们将需要以某种方式将二氧化碳转化为其他有用化学物质的技术。使用金属是一种方法,但如果我们不能很好地了解这些反应是如何在其表面发生的,那么我们就无法对其进行优化。发光为了解这些金属中发生的情况提供了一种新方法"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人