地球史的秘密守护者:锆石帮助科学家揭示亿万年地质之谜

地球史的秘密守护者:锆石帮助科学家揭示亿万年地质之谜 锆石是一种几乎与地球本身一样古老的矿物,它是时间的记录者,也是了解许多地质现象(如氧化状态)的化学窗口。通过确定形成这些碎屑锆石的岩浆的氧化水平,科学家们能够推断出地壳到地幔循环、风化和超大陆循环的开始时间。来源:中国科学出版社锆石是一种几乎与地球本身一样古老的矿物,在岩浆(熔岩)冷却时结晶,可在岩浆岩中发现微量锆石。岩浆的形成构成了地球上的山脉。通过与水和大气的相互作用,山脉分解成沉积物。锆石坚固又稳定,耐风化和侵蚀,很少会消失在历史中,因此沉积物中的这种矿物(所谓的"碎屑锆石")最能让人了解地球的过去。锆石富含铀(U-Pb 测定法),是时间的记录者,也是了解许多地质现象(如氧化态)的化学窗口。火成岩源锆石和沉积物源锆石的 ΔFMQ 移动平均值(未显示低于 10% 的比例)与超大陆汞齐化时间间隔。与沉积源相关的岩浆在大约600Ma的周期性中更为减少,并在26亿年时形成。来源:中国科学出版社研究小组采用了 Loucks 等人(2020 年)的一种新方法来确定花岗岩岩浆的氧化态,该方法利用锆石中 Ce、U 和 Ti 的比率来跟踪地壳岩浆在地球历史上的氧化态变化,该计算方法不需要知道离子电荷,也不需要确定结晶温度、压力或母体熔体成分。"以前的方法包括Ce/Ce*和Eu/Eu*氧压计,但每种方法都有与温度、压力、主岩化学成分变化或测量Ce/Ce*和Eu/Eu*异常所需的REE元素精度有关的局限性"。来自西澳大利亚的 Bob Loucks 说。这种改进的氧化仪能够更可靠地评估氧化状态的变化,现在可以从全球构造随时间变化的角度来解释氧化状态的变化。通过确定形成这些碎屑锆石的岩浆的氧化水平,科学家们能够推断出地壳到地幔循环、风化和超大陆循环的开始时间。关键的一点是,位于地球表面的岩石可以被带回到地幔深处(地表以下数百至数千公里处)。我们的数据表明,这种现象不仅发生在今天,而且可能已经持续了数十亿年。通过观察从地球早期、30 亿年前的锆石到今天形成的锆石,我们发现它们形成时的岩浆氧化还原状态。碎屑锆石的氧化态(以ΔFMQ表示)在大约35亿年前升高,随后在过去30亿年中平均ΔFMQ>0,这表明大洋岩石圈在最终形成的俯冲带中被回收回地幔。研究表明,氧化还原态的下限在 26 亿年前急剧下降,标志着界限分明的大陆的形成和大洋岩石被埋回地球深部地幔。此外,研究人员还发现了氧化还原模式的周期性:每隔 6 亿年左右,大陆就会聚集在一起形成超级大陆,如冈瓦纳大陆、罗迪尼亚大陆、努拉大陆和苏比利亚大陆。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱

远古海洋和行星碰撞的遗迹 科学家揭开地球神秘"D"层的新面纱 与完美的球体不同,D"层出人意料地错落有致。它的厚度因地而异,有些地区甚至完全没有"D"层就像大陆高出地球海洋一样。这些有趣的变化吸引了地球物理学家的注意,他们将 D"层描述为一个异质或非均匀区域。由胡青阳博士(高压科学与技术高等研究中心)和邓杰博士(普林斯顿大学)领导的一项新研究表明,"D"层可能起源于地球的早期。他们的理论基于"巨型撞击假说"(Giant Impact hypothesis),该假说认为一个火星大小的天体撞击了原地球,在撞击后形成了一个覆盖整个地球的岩浆海洋。他们认为,"D"层可能是这一巨大撞击留下的独特成分,可能蕴藏着地球形成的线索。邓杰博士强调,在这个全球岩浆海洋中存在大量的水。这些水的确切来源仍是一个争论不休的话题,人们提出了各种理论,包括通过星云气体和岩浆之间的反应形成,或由彗星直接输送。普遍的观点认为,水会随着岩浆的冷却而向岩浆海洋的底部集中。到最后阶段,最靠近地核的岩浆所含的水量可能与地球现今的海洋相当。海底岩浆海洋中的极端压力和温度条件创造了一种独特的化学环境,促进了水和矿物之间发生意想不到的反应。胡青阳博士解释说:"我们的研究表明,这种含水岩浆海洋有利于形成一种富铁相,即过氧化铁镁。这种过氧化物的化学式为(Fe, Mg)O2,与下地幔中的其他主要成分相比,它对铁的偏好更为强烈。根据我们的计算,这种过氧化物对铁的亲和力可能会导致在几公里到几十公里厚的地层中积累以铁为主的过氧化物。"地核-地幔边界异质结构的形成这种富铁过氧化物相的存在将改变 D"层的矿物组成,偏离我们目前的理解。根据新的模型,D"层的矿物将以一种新的组合为主:贫铁硅酸盐、富铁(铁、镁)过氧化物和贫铁(铁、镁)氧化物。这种以铁为主的过氧化物还具有低地震速度和高导电性,使其成为解释 D"层独特地球物理特征的潜在候选物质。这些特征包括超低速度区和高电导率层,两者都是 D"层众所周知的成分异质性的原因。研究结果表明,由岩浆海洋中的古水形成的富铁过氧化物在形成"D"层的异质结构方面发挥了至关重要的作用。这种过氧化物对铁的强烈亲和力在这些富铁斑块和周围地幔之间形成了鲜明的密度对比。从根本上说,它就像一个绝缘体,阻止它们混合,并有可能解释在下地幔底部观察到的长期异质性。这个模型与最近的数值建模结果非常吻合,表明最下层地幔的异质性可能是一个长期存在的特征。编译自/scitechdaily ... PC版: 手机版:

封面图片

当地球变成冰川:科学家揭开7亿年前的气候之谜

当地球变成冰川:科学家揭开7亿年前的气候之谜 澳大利亚地质学家发现,加拿大的低火山二氧化碳排放量和岩石风化是 7 亿年前极端冰河时期背后的关键因素。他们的研究参考了南澳大利亚的板块构造模型和地质证据,揭示了地球的气候敏感性及其自然恒温机制,将地质气候变化的缓慢速度与人类活动驱动的快速变化进行了对比。资料来源:美国国家航空航天局该研究的主要作者、ARC未来研究员阿德里安娜-杜特凯维奇(Adriana Dutkiewicz)博士说:"想象一下,地球几乎完全被冰雪覆盖。这就是大约7亿年前发生的事情;地球从两极到赤道被冰雪覆盖,气温骤降。然而,究竟是什么造成了这种情况,这一直是个悬而未决的问题。"澳大利亚弗林德斯山脉(Flinders Ranges)北部靠近阿卡鲁拉荒野保护区(Arkaroola Wilderness Sanctuary)的斯图特地层(Sturt Formation)冰川沉积物,距今约 7.17-664 亿年。研究第一作者、悉尼大学地球科学学院的 Adriana Dutkiewicz 博士指着厚厚的冰川沉积层。图片来源:Dietmar Müller 教授/悉尼大学"我们现在认为我们已经破解了这个谜团:历史上较低的火山二氧化碳排放量,得益于现在加拿大境内一大堆火山岩的风化;这是一个吸收大气二氧化碳的过程"。这个项目的灵感来自于这一时期古冰川留下的冰川碎屑,在南澳大利亚的弗林德斯山脉可以看到这些壮观的冰川碎屑。最近,由合著者之一、阿德莱德大学的艾伦-柯林斯教授(Alan Collins)率领,对山脉进行了一次地质实地考察,这促使研究小组利用悉尼大学的 EarthByte 计算机模型,对这一冰期的成因和持续时间之长进行了研究。7.17 亿年前到 6.6 亿年前,地球被冰雪覆盖这是一个长达 5700 万年的冰河时代。由 Adriana Dutkiewicz 博士和 Dietmar Müller 教授领导的悉尼大学地球科学家已经找到了可能的原因:大气中的火山二氧化碳含量达到了历史最低水平。这段视频显示了 8.5 亿年前到 5.4 亿年前大陆(灰色)和板块边界(橙色)的运动(雪花出现在"雪球地球"时期)。 图源:Ben Mather 和 Dietmar Müller/悉尼大学延长的冰河时期也被称为斯图尔特冰川期,是以 19 世纪欧洲殖民时期澳大利亚中部探险家查尔斯-斯图尔特的名字命名的,从 7.17 亿年前延续到 6.6 亿年前,这一时期远在恐龙和陆地上复杂植物生命出现之前。杜特凯维奇博士说:"人们对这一极冰期的触发和结束提出了各种原因,但最神秘的是为什么它持续了5700万年这是我们人类难以想象的时间跨度"。研究小组回到板块构造模型,该模型显示了古代超大陆罗迪纳断裂后大陆和海洋盆地的演变过程。他们将其与一个计算机模型连接起来,该模型计算了大洋中脊沿线水下火山的二氧化碳脱气情况,大洋中脊是板块分叉和新洋壳诞生的地点。南澳大利亚弗林德斯山脉悉尼大学地球科学学院的 Adriana Dutkiewicz 博士。资料来源:悉尼大学他们很快意识到,斯图尔特冰期的开始正好与火山二氧化碳排放量的历史最低点相关。此外,在整个冰河时期,二氧化碳的外流量都保持在相对较低的水平。杜特凯维奇博士说:"此时,地球上还没有多细胞动物或陆地植物。大气中的温室气体浓度几乎完全由火山排出的二氧化碳和硅酸盐岩风化过程决定,而风化过程会消耗二氧化碳。"合著者之一、悉尼大学的迪特玛-穆勒(Dietmar Müller)教授说:"地质学在这一时期主宰着气候。我们认为斯图尔特冰期的到来是双重打击的结果:板块构造重组使火山脱气降到最低,同时加拿大的大陆火山区开始侵蚀,消耗大气中的二氧化碳。"弗林德斯山脉阿卡鲁拉荒野保护区方向的景色,约 7.17-664 亿年前斯图尔特冰川作用形成的斯图尔特地层冰川沉积物在照片左侧中间形成了一个突出的山脊。图片来源:Dietmar Müller 教授/悉尼大学"其结果是,大气中的二氧化碳下降到冰川期开始时的水平我们估计低于百万分之 200,不到今天水平的一半"。研究小组的工作提出了有关地球长远未来的有趣问题。最近的一个理论提出,在未来的2.5亿年里,地球将向Pangea Ultima演化,这是一个超级大陆,温度很高,哺乳动物可能会灭绝。然而,随着大陆碰撞的加剧和板块速度的减缓,地球目前也正处于火山二氧化碳排放量降低的轨迹上。因此,也许"潘吉亚终极"会再次变成雪球。Dutkiewicz 博士说:"无论未来会发生什么,重要的是要注意,这里研究的地质气候变化发生得极其缓慢。据美国国家航空航天局(NASA)称,人类引起的气候变化的速度比我们以前看到的要快 10 倍。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现30亿年前的地幔温度升高热使地球地壳“年轻化”

研究发现30亿年前的地幔温度升高热使地球地壳“年轻化” 为了进一步了解地壳的历史,研究人员对中国西南扬子克拉通花岗岩中的锆石颗粒进行了研究(如显微镜下所示)。图片来源:Wei Wang然而,陨石坑是微小锆石颗粒的家园,其中含有多种同位素系统,如铀、铪、氧或铅,为我们提供了一种了解数十亿年前历史的方法。与熔岩或岩浆形成的火成锆石相比,在岩石风化后的沉积物中发现的碎屑锆石能更连续地记录地球的历史。但是,由于碎屑锆石缺乏关于其来源岩石的岩石成因信息,它们可能会人为地暗示古老岩石的年轻年龄和不正确的铪同位素。在一项新的研究中,科学家们重点研究了完整的火成岩锆石。以前的研究表明,在距今约30亿年前从古新纪向中新纪过渡期间,位于碎屑岩和火成岩锆石中的铪同位素比值有所增加。这种增加被认为是地壳年轻化的结果,即较新的岩浆注入较老的地壳岩石。人们普遍认为,岩浆的增加也标志着从不动的地壳和地幔过渡到更加不稳定的板块运动时期。新研究对中国西南西南扬子克拉通花岗岩岩石的火成锆石和其他地球化学性质进行了研究,对这一理论提出了挑战。研究人员认为,这一时代全球范围内发生的地壳年轻化是地幔温度升高的结果,而不是大范围构造活动的结果。通过分析火成岩锆石中的同位素收集到的数据表明,较年轻的岩浆流入现有的大陆地壳,导致地幔岩石熔化,热岩浆在地壳-地幔边界汇集。这些部分熔化的岩浆有的会冷却成花岗岩,如西南扬子克拉通的花岗岩。这一过程可能在大陆地壳的生长过程中发挥了重要作用,并为我们今天所知的地球构造的起源提供了新的可能解释。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

37.5亿年前 科学家发现一段古老地壳的证据

37.5亿年前 科学家发现一段古老地壳的证据 这些痕迹是在矿物锆石中发现的,经过化学分析,地球科学与自然资源管理系的研究人员发现,丹麦和斯堪的纳维亚半岛赖以生存的"地基"很可能是在大约 37.5 亿年前从格陵兰岛"诞生"的。图片来源:Andreas Petersson芬兰的河沙和岩石中发现的锆石晶体的特征表明,它们比在斯堪的纳维亚半岛发现的任何东西都要古老得多,同时与格陵兰岛岩石样本的年龄相吻合。同时,三项独立同位素分析的结果证实,斯堪的纳维亚半岛的基岩很可能与格陵兰岛有关。资料来源:Andreas Petersson地球科学与自然资源管理系地质学家托德-怀特教授说:"我们的数据表明,斯堪的纳维亚半岛地下最古老的地壳部分起源于格陵兰岛,比我们之前认为的要早大约 2.5 亿年。"研究人员对锆石的研究表明,锆石的化学指纹在多个方面与西格陵兰北大西洋克拉通发现的地球上最古老的岩石相吻合。"我们在芬兰的河沙和岩石中发现的锆石晶体的特征表明,它们比斯堪的纳维亚半岛发现的任何东西都要古老得多,同时与格陵兰岛岩石样本的年龄相吻合。"地球科学与自然资源管理系研究员安德烈亚斯-彼得森(Andreas Petersson)说:"同时,三项独立同位素分析的结果证实,斯堪的纳维亚半岛的基岩很可能与格陵兰岛有关。"没有氧气的水世界丹麦、瑞典、挪威和芬兰位于地壳的一部分,这部分地壳被称为芬诺斯堪地盾(Fennoscandian Shield)或波罗的海地盾(Baltic Shield)。研究人员认为,它从格陵兰岛分离出来,成为一颗"种子",经过数亿年的移动,直到在今天芬兰所在的地方"生根发芽"。在这里,板块随着周围新的地质物质的积累而不断扩大,直到成为斯堪的纳维亚半岛。地壳从格陵兰岛脱离时,地球的面貌与今天截然不同。研究人员分析了来自芬兰偏远的普达斯耶尔维(Pudasjärvi)和索穆耶尔维(Suomujärvi)地区的现代河沙和岩石样本中的锆石。在芬兰河沙中发现的锆石晶体最初是在地壳深处的花岗岩岩浆中结晶的。然后,这些花岗岩被抬升到地表并受到侵蚀,最终形成了沙子。资料来源:Tod Waight"地球很可能是一个充满水的星球,就像电影《水世界》中那样,但大气中没有氧气,也没有地壳。但是,由于时间太久远了,我们无法确定它的真实面貌,"托德-怀特说。据研究人员称,当他们把目光投向太空并与银河系附近的其他行星进行比较时,地球甚至拥有由花岗岩构成的大陆地壳这一事实是非常特别的。"这在太阳系中是独一无二的。而且,液态水和花岗岩地壳的证据是识别宜居系外行星和地球外生命可能性的关键因素,"安德烈亚斯-彼得森解释说。这项新研究为原始大陆之谜增添了新的内容。原始大陆之谜早在地球生命真正绽放之前就已开始,但它在很大程度上为人类和动物的生命铺平了道路。"了解大陆是如何形成的,有助于我们理解为什么我们的星球是太阳系中唯一有生命存在的星球。因为如果没有固定的大陆和大陆之间的水,我们就不会存在。事实上,大陆对洋流和气候都有影响,而洋流和气候对地球上的生命至关重要,"安德烈亚斯-彼得森说。此外,越来越多的研究拒绝接受迄今为止用来计算大陆如何生长的方法,尤其是在地球历史的头十亿年里,这项新研究为这些研究做出了贡献。"最常用的模型假定,地球的大陆地壳是在地球形成时开始形成的,即大约 46 亿年前。相反,我们和其他几项最新研究表明,显示大陆地壳生长的化学特征只能在大约 10 亿年后才能确定。"华特教授说:"这意味着,我们可能需要修改关于早期大陆如何演化的许多想法。"与此同时,这项研究的结果还补充了之前在世界其他地区的古地壳中发现类似"种子"的研究。"我们的研究为我们揭开大陆是如何形成并在地球上蔓延的谜团提供了另一条重要线索尤其是在芬诺斯坎地盾方面。但是,我们还有很多事情不知道。例如,在澳大利亚、南非和印度都发现了类似的种子,但我们还不确定它们是否都来自同一个"发源地",或者它们是否在地球上的几个地方独立起源。"怀特教授总结说:"我们希望利用我们在这项研究中使用的方法对这一问题进行更多的调查。编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现地球生命的潜在星际起源

科学家发现地球生命的潜在星际起源 在地球上出现生命之前,基本的有机分子是由氮、硫、碳和磷等稀缺元素形成的。新的研究表明,富含这些元素的宇宙尘埃可能通过在地球上,特别是在冰原融洞中的高浓度积累,启动了前生物化学,从而有可能导致生命组成元素的形成。资料来源:NASA / JPL-Caltech事实上,生命的基本组成元素是如此稀少,以至于化学反应很快就会耗尽,如果它们真的能够进行的话。地球组成岩石的侵蚀和风化等地质过程也无法确保充足的供应,因为地壳中包含的这些元素实在太少了。尽管如此,在地球历史的前 5 亿年里,发生了一种前生物化学反应,产生了诸如RNA、DNA、脂肪酸和蛋白质等有机分子,所有生命都是在这些有机分子的基础上诞生的。所需数量的硫、磷、氮和碳从何而来?地质学家、诺米斯研究员克雷格-沃尔顿坚信,这些元素主要是以宇宙尘埃的形式来到地球的。这些尘埃是在太空中产生的,例如当小行星相互碰撞时。即使在今天,每年仍有约 3 万吨尘埃从太空落到地球上。然而,在地球诞生的早期,尘埃的数量要大得多,每年高达数百万吨。然而,最重要的是,尘埃粒子含有大量的氮、碳、硫和磷。因此,它们有可能引发化学级联反应。然而,灰尘的散布范围很广,在任何一个地方都只能发现极少量的灰尘,这一事实与上述说法相悖。沃尔顿说:"但如果把运输过程包括在内,情况就会不同。风、雨或河流在大范围内收集宇宙尘埃,并以浓缩的形式沉积在某些地方。"澄清问题的新模式为了弄清宇宙尘埃是否可能是启动前生物化学(反应)的源头,沃尔顿与剑桥大学的同事们一起建立了一个模型。研究人员利用该模型模拟了在地球历史的最初 5 亿年里,有多少宇宙尘埃落到了地球上,以及这些尘埃可能在地球表面的哪些地方积聚。他们的研究现已发表在科学杂志《自然-天文学》上。该模型是与剑桥大学的沉积专家和天体物理学家合作开发的。英国研究人员专门从事行星和小行星系统的模拟研究。模拟显示,早期地球上可能存在宇宙尘埃浓度极高的地方。而且,来自太空的补给源源不断。然而,地球形成后,尘埃雨迅速锐减:5 亿年后,尘埃流比零年小了一个数量级。研究人员将偶尔出现的上升高峰归因于小行星碎裂并向地球发送了尘埃尾流。冰原上的融化洞是尘埃陷阱大多数科学家和普通人都认为,地球被岩浆海洋覆盖了数百万年;这将在很长一段时间内阻止宇宙尘埃的迁移和沉积。沃尔顿说:"然而,最近的研究发现,有证据表明地球表面冷却和凝固的速度非常快,并形成了大面积的冰原。"根据模拟结果,这些冰原可能是宇宙尘埃积聚的最佳环境。冰川表面的融化孔即所谓的冷冻孔不仅会使沉积物积聚,也会使来自太空的尘粒积聚。随着时间的推移,尘埃粒子中释放出相应的元素。当它们在冰川水中的浓度达到临界值时,化学反应就会自动开始,从而形成有机分子,这就是生命的起源。即使在熔洞冰冷的温度下,化学过程也有可能开始进行。沃尔顿说:"低温并不会破坏有机化学,相反,低温下的反应比高温下的反应更有选择性和特异性。其他研究人员已经在实验室中证明,简单的环形核糖核酸(RNA)会在冰点附近的温度下自发地在这种融水汤中形成,然后进行自我复制。该论点的一个弱点可能是,在低温条件下,形成有机分子所需的元素只能非常缓慢地从尘埃粒子中溶解出来。"启动关于生命起源的辩论沃尔顿提出的理论在科学界并非没有争议。这项研究肯定会引发一场有争议的科学辩论,但它也会引发关于生命起源的新观点。早在 18 和 19 世纪,科学家们就确信陨石将沃尔顿所说的"生命元素"带到了地球。即使在当时,研究人员也在来自太空的岩石中发现了大量这些元素,但在地球的基岩中却没有发现。沃尔顿说:"然而,从那时起,几乎没有人考虑过前生物化学主要是由陨石引发的这一观点。"沃尔顿解释说:"陨石的想法听起来很有吸引力,但有一个问题。一块陨石只能在有限的环境中提供这些物质;陨石撞击地面的位置是随机的,而且无法保证进一步的供应。我认为,生命的起源不太可能依赖于几块广泛而随机散落的岩石。"另一方面,我认为富集的宇宙尘埃是一个可信的来源。"沃尔顿的下一步将是通过实验检验他的理论。在实验室中,他将使用大型反应容器来重现原始熔洞中可能存在的条件,然后将初始条件设定为 40 亿年前低温熔洞中可能存在的条件,最后再观察是否真的发生了产生生物相关分子的化学反应。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现超地球形成过程中的第一块基石:氧化镁

科学家发现超地球形成过程中的第一块基石:氧化镁 高能激光实验将这种矿物的微小晶体置于岩石行星地幔深处的那种热量和压力之下,表明这种化合物可能是形成"超级地球"系外行星的岩浆海洋中最早凝固出来的矿物。"氧化镁可能是控制年轻超级地球热力学的最重要固体,"领导这项研究的约翰-霍普金斯大学地球与行星科学助理教授琼-威克斯说。"如果它具有如此高的熔化温度,那么当一颗炙热的岩石行星开始冷却,其内部分离为地核和地幔时,它将是第一个结晶的固体。"这些研究结果最新发表在《科学进展》(Science Advances)上。他们认为,氧化镁从一种形态过渡到另一种形态的方式可能对控制年轻行星是雪球还是熔岩、是形成水海洋还是大气层、还是具有这些特征的混合体的因素有重要影响。威克斯说:"在陆地超级地球中,这种物质将是地幔的重要组成部分,它的转变将极大地促进内部热量的快速流动,这将控制内部和行星其他部分随着时间的推移如何形成和变形。我们可以把它看作是这些行星内部的替代物,因为它将是控制其变形的物质,而变形是岩石行星最重要的组成部分之一"。在激光能量实验室的试验室内进行的冲击压缩氧化镁(MgO)的激光驱动实验。高功率激光束被用来将氧化镁样品压缩到超过地球中心的压力。辅助 X 射线源用于探测氧化镁的晶体结构。更亮的区域是纳秒级的发光等离子体发射。资料来源:June Wicks/约翰-霍普金斯大学超级地球比地球大,但比海王星或天王星等巨行星小,是系外行星搜索的关键目标,因为它们在银河系的其他太阳系中很常见。威克斯说,虽然这些行星的成分可能从气体到冰或水不尽相同,但岩质超级地球预计会含有大量氧化镁,可以像在地球上一样影响行星的磁场、火山活动和其他关键地球物理。为了模拟这种矿物在行星形成过程中可能承受的极端条件,Wick 的团队利用罗切斯特大学激光能量实验室的 Omega-EP 激光设备对小样本进行了超高压处理。科学家们还发射了 X 射线,并记录了这些光线在晶体上的反弹情况,以追踪它们的原子是如何随着压力的增加而重新排列的,特别是注意到它们在什么时候从固态转变为液态。当受到极度挤压时,氧化镁等材料的原子会改变排列方式,以承受挤压压力。这就是为什么随着压力的增加,这种矿物会从类似于食盐的岩盐"相"转变为类似于另一种叫做氯化铯的盐的不同构型。威克斯说,这种转变会影响矿物的粘度,并随着年龄的增长对地球产生影响。研究小组的研究结果表明,氧化镁可以在 430 到 500 千兆帕的压力和大约 9700 开尔文的温度(几乎是太阳表面温度的两倍)下以两种相态存在。实验还表明,这种矿物在完全熔化之前所能承受的最高压力高达 600 千兆帕,大约是人们在海洋最深处的海沟中所能感受到的压力的 600 倍。"氧化镁的熔化温度比任何其他材料或矿物都要高得多。钻石可能是最坚硬的材料,但这是最后融化的材料,"威克斯说。"说到年轻行星中的极端物质,氧化镁很可能是固态的,而地幔中悬浮的其他一切物质都会变成液态。"这项研究展示了氧化镁在极端压力下的稳定性和简易性,有助于科学家们开发更精确的理论模型,以探究氧化镁和其他矿物在像地球这样的岩石世界中的行为的关键问题。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人