科学家发现所有哺乳动物脑细胞共有的学习基因的新功能

科学家发现所有哺乳动物脑细胞共有的学习基因的新功能 对小鼠的研究可以为治疗SYNGAP1基因突变儿童的大脑发育障碍提供指导。约翰斯-霍普金斯大学医学院的神经科学家发现了SYNGAP1基因以前未知的功能,该基因的DNA序列控制着包括小鼠和人类在内的哺乳动物的记忆和学习。这一发现最近发表在《科学》(Science)杂志上,它可能会影响针对SYNGAP1突变儿童的疗法的开发,这些儿童患有一系列以智力障碍、类似自闭症的行为和癫痫为特征的神经发育障碍。一般来说,SYNGAP1 和其他基因通过制造调节突触强度(脑细胞之间的连接)的蛋白质来控制学习和记忆。研究人员说,以前人们认为SYNGAP1基因只通过编码一种蛋白来发挥作用,这种蛋白的作用类似于酶,能调节导致突触强度变化的化学反应。现在,科学家们说,他们在小鼠身上进行的实验表明,该基因编码的蛋白质的功能可能更像一种所谓的支架蛋白,它能调节突触的可塑性,或突触随着时间的推移变得更强或更弱,而与酶的活性无关。他们说,SynGAP 蛋白似乎扮演着交通管理者的角色,指挥着大脑蛋白质在突触的位置和内容。探索与实验约翰霍普金斯大学医学院神经科学和心理与脑科学布隆伯格特聘教授、所罗门-H-斯奈德神经科学系主任理查德-胡加尼尔博士和他的团队于 1998 年首次分离出SYNGAP1基因。胡加尼尔说,SynGAP 蛋白在突触中的含量非常丰富,长期以来,人们一直认为 SynGAP 的主要作用是引发调节突触强度的酶化学反应。但是,在研究 SynGAP 蛋白的过程中,休加尼尔等人开始发现,当 SynGAP 蛋白与主要的突触支架蛋白 PSD-95 发生作用时,它们具有一种奇怪的特性。它们会变成液滴,对于酶蛋白来说,这种结构转变是不寻常的。显示 SynGAP(绿色)与突触处 PSD-95 结合的神经元。图片来源:约翰霍普金斯大学医学院 Yoichi Araki 和 Rick Huganir为了弄清并理解SynGAP奇特的液体转变的目的,胡加尼尔、神经科学导师荒木洋一和胡加尼尔在约翰霍普金斯大学的研究团队设计了神经元实验,他们在SYNGAP1基因的所谓GAP结构域中插入突变,从而在不影响其结构的情况下消除SynGAP的酶功能。约翰-霍普金斯大学的研究小组发现,即使没有酶的活性,突触也能正常工作,这表明结构特性本身对 SynGAP 的功能非常重要。研究小组接下来在小鼠身上进行了相同类型的基因工程,以去除 SynGAP 的酶功能,结果发现类似:突触表现正常,突触可塑性没有问题,小鼠的学习和记忆行为也没有困难。研究小组称,这表明 SynGAP 的结构特性足以保证正常的认知行为。为了了解SynGAP的结构是如何调节突触的,科学家们对突触进行了更仔细的分析,发现SynGAP蛋白与AMPA受体/TARP复合物(加强突触的神经递质蛋白束)和PSD-95支架蛋白的结合存在竞争。实验表明,在静止状态下,SynGAP 与 PSD-95 紧密结合,不允许它与突触中的任何其他蛋白质结合。然而,在突触可塑性、学习和记忆过程中,SynGAP 蛋白会断开与 PSD-95 的连接,离开突触,并允许神经递质受体复合物与 PSD-95 结合。这使得突触变得更强,增加了脑细胞之间的传递。Huganir说:"这一系列过程并没有SynGAP典型的催化活性。相反,SynGAP 在与 PSD-95 结合时会将其束缚住,但当 SynGAP 离开这个突触时,PSD-95 就会开放,与 AMPA 受体/TARP 复合物结合。"在 SynGAP 基因突变的儿童中,突触中的 SynGAP 蛋白数量减少了一半左右。由于 SynGAP 蛋白的数量减少,PSD-95 可能会更多地与 AMPA 受体/TARP 复合物结合,从而改变神经元的连接,导致脑细胞活动增加,这就是 SynGAP 突变儿童常见的癫痫发作的特征。Huganir说,SynGAP的两种功能酶和支架蛋白的"交通管理"作用现在可能对寻找SynGAP相关神经发育障碍的治疗方法非常重要。他们的研究还表明,仅针对SynGAP的一种功能可能不足以产生重大影响。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家通过基因编辑诱使癌细胞自毁

科学家通过基因编辑诱使癌细胞自毁 创新的关键在于引入了两个新的"开关"。第一个开关能使改造细胞在接触某种药物时,超越并主宰癌细胞群的其他部分。第二个开关会释放一种毒素,杀死现在占主导地位的改造细胞及其未改造的邻近细胞。发表在《自然-生物技术》(Nature Biotechnology)上的一项研究强调,这种"双开关选择基因驱动"方法解决了现有癌症治疗方法的核心难题。一些癌细胞不可避免地会进化出抗药性机制,从而在治疗中存活下来。细胞可能会使药物失活,关闭药物靶向的通路,或做出其他分子改变以维持生命。为了应对这种情况,医生通常会使用多种药物组合,以不同的方式攻击肿瘤。然而,这些选择是有限的,尤其是对于缺乏有效治疗靶点的难治癌症。新技术采用了一种截然不同的方法。它不是寻找新的药物或靶点,而是利用肿瘤快速进化的能力来对付它。在概念验证实验中,研究人员使用了肺癌细胞和药物厄洛替尼。通常,厄洛替尼是通过阻断表皮生长因子受体蛋白的活化来发挥作用的,而表皮生长因子受体蛋白是细胞不受控制生长的驱动力。然而,科学家们改造了肺癌细胞,通过第一个"自杀基因"来逆转厄洛替尼的作用,使细胞产生抗药性,并在接触药物后迅速增殖。将厄洛替尼应用于混合修饰和未修饰的癌细胞,可使经过编辑的细胞迅速成为肿瘤样本中的主要群体。一旦达到这种效果,研究人员就停止给药。然后,他们用一种名为 5-FC 的无害化合物激活了第二个"自杀基因"。这种基因能表达一种酶,将 5-FC 转化为剧毒抗癌药物 5-FU。由于被编辑的细胞现在占了肿瘤的大部分,释放的毒素有效地杀死了整个癌细胞群。研究人员在患有非小细胞肺癌(最常见的肺癌类型)的小鼠身上测试了这种方法,发现经过改造的细胞在20天内就超越了原来的肿瘤。到第80天,肿瘤完全消退。研究小组目前正努力在其他癌症类型和药物组合上测试这种方法。如果试验成功,它将为战胜癌症提供一种新方法。 ... PC版: 手机版:

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因 2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止 DNA 损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了 145 个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和 DNA 损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过 CRISPR 筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质 SIRT1 得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(Gabriel Balmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对 SIRT1 的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(David Adams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的 145 个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及 DNA 复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当 SIRT1 蛋白被抑制时,DNA 损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为 SMC3 的蛋白质的化学水平实现的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

《基因危机:天才科学家的五日 2014 》 | 简介:基因危机:天才科学家的五日 2014围绕天才科学家在五天内所面临的基因技术

《基因危机:天才科学家的五日 2014 》 | 简介:基因危机:天才科学家的五日 2014围绕天才科学家在五天内所面临的基因技术引发的危机展开,剧情紧张刺激,探讨基因科技对人类社会带来的巨大冲击,呈现科学、伦理与人性之间的复杂博弈 。|文件大小 NG| 链接:|标签: 基因危机 2014 #基因科幻 #伦理探讨 #危机解谜

封面图片

科学家揭示一种肺癌如何转化为另一种肺癌

科学家揭示一种肺癌如何转化为另一种肺癌 研究人员捕捉到肺癌转化的蛛丝马迹:免疫荧光图像显示,小细胞肺癌(紫粉色)在小鼠肺部的支气管(绿色)中扩散,支气管中含有残留的肺腺癌肿瘤细胞(蓝色)。图片来源:瓦默斯实验室埃里克-加德纳博士研究人员的研究结果发表在《科学》(Science)杂志上,他们发现,在从肺腺癌向小细胞肺癌(SCLC)转变的过程中,突变细胞似乎通过一种类似干细胞的中间状态发生了细胞身份的改变,从而促进了转变。"在人类患者身上研究这一过程非常困难。因此,我的目标是在小鼠模型中揭示肺腺癌向小细胞肺癌转化的内在机制,"研究带头人埃里克-加德纳博士说,他是刘易斯-托马斯大学医学教授、威尔康奈尔医学院桑德拉和爱德华-迈耶癌症中心成员哈罗德-瓦尔穆斯博士实验室的博士后研究员。这种复杂的小鼠模型耗时数年才开发完成并定性,但却让研究人员破解了这一难题。这项研究是与生理学和生物物理学助理教授、威尔康奈尔医学院迈耶癌症中心成员阿什利-劳格尼(Ashley Laughney)博士,以及劳格尼实验室研究生、三院计算生物学和医学项目成员伊桑-厄利(Ethan Earlie)合作进行的。瓦默斯博士说:"众所周知,癌细胞会不断进化,尤其是为了逃避有效治疗的压力。这项研究表明,新技术(包括检测单个癌细胞的分子特征)与基于计算机的数据分析相结合,可以描绘出致命癌症进化过程中戏剧性的复杂事件,揭示出新的治疗目标。"SCLC最常发生在重度吸烟者身上,但这种类型的肿瘤也发生在相当多的肺腺癌患者身上,尤其是在接受了针对一种叫做表皮生长因子受体(EGFR)的蛋白质的治疗后,这种蛋白质会促进肿瘤生长。新的 SCLC 型肿瘤对抗表皮生长因子受体疗法具有抗药性,因为它们的生长是由一种新的癌症驱动因子高水平的 Myc 蛋白所推动的。为了揭示这些癌症途径之间的相互作用,研究人员设计小鼠患上了一种常见的肺腺癌,在这种癌症中,肺上皮细胞受 表皮 生长因子受体基因突变的驱动。然后,他们把腺癌肿瘤变成了SCLC型肿瘤,这种肿瘤通常来自神经内分泌细胞。为此,他们关闭了表皮生长因子受体,同时还发生了其他一些变化,包括肿瘤抑制基因Rb1和Trp53的缺失,以及已知的SCLC驱动基因Myc的增殖。表皮生长因子受体(EGFR)和Myc等癌基因是正常控制细胞生长的基因的变异形式。它们在推动癌症生长和扩散方面的作用众所周知。另一方面,抑癌基因通常会抑制细胞增殖和肿瘤发展。令人惊讶的是,这项研究表明,致癌基因的作用方式与环境有关。虽然大多数肺细胞对Myc的致癌作用有抵抗力,但神经内分泌细胞对Myc的致癌作用却非常敏感。相反,肺气囊的上皮细胞是肺腺癌的前体,它们在表皮生长因子受体突变的作用下过度生长。Laughney 博士说:"这表明,在错误的细胞类型中,'癌基因'不再像癌基因那样发挥作用。因此,它从根本上改变了我们对致癌基因的看法。"研究人员还发现了一种既不是腺癌也不是SCLC的干细胞样中间体。只有当肿瘤抑制基因RB1和TP53 发生突变时,处于这种过渡状态的细胞才会变成神经内分泌细胞。他们观察到,另一种名为Pten的肿瘤抑制因子的缺失加速了这一过程。在这一阶段,致癌基因Myc可以驱动这些中间干样细胞形成SCLC型肿瘤。这项研究进一步支持了寻找靶向Myc蛋白疗法的努力,Myc蛋白与多种癌症有牵连。研究人员现在计划利用他们的新小鼠模型进一步探索腺癌-SCLC的转变,例如详细研究免疫系统如何正常应对这种转变。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科学家实现以RNA为媒介的基因精准写入

中国科学家实现以RNA为媒介的基因精准写入 以CRISPR基因编辑技术为代表的技术进步实现了基因组单碱基和短序列尺度的精准编辑,基本解决了基因组精准编辑的挑战。然而,如何针对应用场景的需求,实现大片段DNA在基因组的高效精准整合,仍然是整个基因工程领域亟需突破的难题。该技术的突破意味着可以通过外源功能基因的精准写入,来干预多种不同位点基因突变导致的单基因遗传缺陷等疾病,从而开发更为通用的基因与细胞疗法,具有广泛的应用前景。针对这一重大技术挑战,多种基因写入技术已被开发,如CRISPR核酸酶介导的同源重组或非同源末端连接技术等,但是这些技术都依赖于DNA模板作为基因写入的供体(donor)。在实际医学应用中,DNA供体面临免疫原性高、在体(in vivo)递送困难、在基因组中具有随机整合风险等诸多挑战。相比之下,RNA供体具有免疫原性低、可被非病毒载体(例如LNP)有效递送、在细胞内迅速降解,无随机整合风险等特点,能有效应对DNA供体所面临的挑战。因此,以RNA为供体的大片段精准写入技术,在安全性、可递送性方面都具有显著的优势。然而,现有以RNA为供体的技术,要么无法实现>200 bp的DNA片段高效整合(如引导编辑等),要么依靠基因组随机整合从而带来基因组随机突变风险(如逆转录病毒等)。是否能够以RNA作为供体,实现功能基因尺度的大片段DNA基因组精准定点整合?仍然是基因工程领域面临的挑战。2024年7月8日,Cell杂志以长文形式在线发表了中国科学院动物研究所/北京干细胞与再生医学研究院李伟研究员与周琪研究员团队合作完成的题为All-RNA-mediated Targeted Gene Integration in Mammalian Cells with Rationally Engineered R2 Retrotransposons的研究论文。该研究结合基因组数据挖掘和大分子工程改造等手段,开发了使用RNA供体进行大片段基因精准写入的R2逆转座子工具,能够在多种哺乳动物细胞系、原代细胞中实现大片段基因(>1.5 kb)高效精准的整合,最高效率超过60%,成功实现了全RNA介导的功能基因(DNA)在多种哺乳动物基因组的精准写入,为新一代创新基因疗法的发展提供了基础。作为基因组进化的源动力之一,转座子可以通过在不同基因组间的"跳跃",实现自我的复制与扩增。其中,以RNA作为媒介的R2逆转座子的"跳跃"机制与以RNA作为供体的基因写入工具的开发思路不谋而合。同时,该类逆转座子天然倾向于整合在真核生物固定的28S rDNA基因组位点,这一位点在人基因组中拷贝数目多(约219个),且远离蛋白编码基因,是适合于外源基因整合的安全港位点("safe harbor"loci)。因此,R2逆转座子是以RNA为供体的大片段基因写入工具开发的有力的候选者。然而,尽管R2逆转座子早在上世纪80年代就被发现,其在哺乳动物细胞中的功能性质尚未被系统性地探索,迄今为止,未能被利用来在哺乳动物细胞中实现大片段功能基因的有效整合。在本研究中,研究团队首先通过数据挖掘,全面系统地分析了自然界中R2逆转座子元件的生物多样性;通过构建基于RNA供体的基因写入的报告体系,成功筛选出在哺乳动物细胞中具有完整GFP功能基因整合活性的R2Tg系统(来源于一种鸟Taeniopygia guttata 的基因组)。随后,研究团队针对R2Tg系统发挥功能所必需的两个关键组分:R2蛋白质以及供体RNA,进行了系统性的功能探索与工程化改造,最终获得了在人细胞系中基因整合效率超过20%的en-R2Tg工具。系统的工程化改造获得en-R2Tg工具由于R2蛋白质可以通过mRNA表达,且供体RNA本身也是RNA,那么,en-R2Tg工具能否以全RNA形式介导的基因的高效精准写入?为了探究这一点,研究人员通过体外合成获得了编码R2蛋白质mRNA以及供体RNA,并使用脂质体递送的方式将两条mRNA导入人的细胞中。结果显示,en-R2Tg工具能够高效整合多个与疾病治疗相关基因,且这些基因能够有效表达功能蛋白。能够以全RNA的形式发挥功能,意味着en-R2Tg工具可以使用安全性已经在临床上得到证明的LNP纳米材料来进行递送,这将有可能解决长久以来基因写入工具依赖病毒载体进行高效递送的难题。研究团队发现,使用LNP递送en-R2Tg工具在人的肝脏细胞系中能够实现25%的基因整合效率。此外,研究团队还证明R2工具在人类原代细胞中同样具有活性;同时,通过显微注射将en-R2Tg工具导入小鼠胚胎,成功实现了超过60%的GFP基因定点整合效率。本研究的另一关键点在于,工程化改造的en-R2Tg工具是否还保留有天然R2逆转座子的28S rDNA位点特异性整合这一性质?为了回答这一问题,研究人员结合无偏好的基因整合富集高通量测序以及全基因组三代测序方法,发现en-R2Tg工具在全基因组范围内展现了极高的基因整合特异性,大于99%的外源基因都精准整合到28S rDNA安全港位点。同时,结合qRT-PCR以及RNA-Seq实验,研究人员发现en-R2Tg工具对细胞的转录组状态几乎没有影响。这说明 en-R2Tg 介导的基因写入是位点精准特异的,可以有效避免逆转录病毒等技术所产生的基因随机整合导致的基因突变风险。综上,该研究基于自然界存在的R2逆转座系统,结合数据分析和工程化改造方法,成功开发了全RNA介导的、高效精准的基因写入技术,首次在多种人和小鼠细胞系及原代细胞中实现了功能基因的定点整合。R2基因精准写入工具在递送和安全性方面具有显著优势,未来有望基于此工具开发在体功能基因回补写入以及在体生成CAR-T细胞等全新的疾病治疗方法。值得注意的是,R2基因写入技术目前无法实现在不同基因组位点的可编程写入,且在人原代细胞中的基因写入效率较低,因此未来需要进一步发展和优化。开发全RNA介导的、高效精准的哺乳动物细胞大片段功能基因写入工具该研究由中国科学院动物研究所与北京干细胞与再生医学研究院合作完成,中国科学院动物研究所博士后陈阳灿、博士生骆胜球、博士后胡艳萍、博士生毛邦炜、王鑫阁与卢宗宝为本研究共同第一作者,中国科学院动物研究所李伟研究员与周琪研究员为共同通讯作者。该研究工作得到科学技术部、国家自然科学基金委员会、中国科学院、北京市自然科学基金等的大力支持。 ... PC版: 手机版:

封面图片

科学家发现光合作用的原子级秘密

科学家发现光合作用的原子级秘密 了解光合蛋白质的生产论文的共同作者、研究小组组长迈克尔-韦伯斯特(Michael Webster)博士说:"叶绿体基因的转录是制造光合蛋白的基本步骤,光合蛋白为植物提供生长所需的能量。我们希望通过更好地了解这一过程在详细的分子水平上能够帮助研究人员开发出光合作用更强的植物。这项工作最重要的成果是创建了一个有用的资源。研究人员可以下载我们的叶绿体聚合酶原子模型,并利用它提出自己关于叶绿体聚合酶如何发挥作用的假设,以及检验这些假设的实验策略。"光合作用是在叶绿体内进行的,叶绿体是植物细胞内的一个小区块,它含有自己的基因组,反映了叶绿体在被植物吞噬和合并之前曾是自由生活的光合细菌。看到植物叶绿体中转录光合基因的聚合酶分子。用电子显微镜收集到的单个分子图像经过分类和排列,揭示了蛋白质复合体结构架构的细节。资料来源:迈克尔-韦伯斯特和伊斯卡-普拉马尼克约翰-英纳斯中心的韦伯斯特小组研究植物如何制造光合蛋白,光合蛋白是实现这一优雅化学反应的分子机器,它将大气中的二氧化碳和水转化为单糖,并产生氧气作为副产品。蛋白质生产的第一阶段是转录,通过读取基因产生"信使RNA"。转录过程由一种名为 RNA 聚合酶的酶完成。叶绿体 RNA 聚合酶的复杂性50 年前,人们发现叶绿体中含有自己独特的 RNA 聚合酶。从那时起,科学家们就对这种酶的复杂程度感到惊讶。它比它的祖先细菌 RNA 聚合酶有更多的亚基,甚至比人类的 RNA 聚合酶还要大。韦伯斯特小组希望了解为什么叶绿体具有如此复杂的 RNA 聚合酶。为此,他们需要对叶绿体 RNA 聚合酶的结构构造进行可视化。研究小组使用一种称为低温电子显微镜(cryo-EM)的方法,对从白芥子植物中纯化的叶绿体RNA聚合酶样本进行成像。原子级分析的启示通过处理这些图像,他们建立了一个包含分子复合体中 5 万多个原子位置的模型。RNA 聚合酶复合体由 21 个亚基组成,分别在核基因组和叶绿体基因组中编码。研究人员对这一结构进行了仔细分析,从而开始解释这些元件的功能。这个模型让他们确定了一种蛋白质,它能在DNA转录过程中与DNA相互作用,并引导DNA进入酶的活性位点。另一种成分可以与正在产生的 mRNA 相互作用,从而在 mRNA 转化为蛋白质之前保护它不被蛋白质降解。韦伯斯特博士说:"我们知道叶绿体 RNA 聚合酶的每一个组成部分都起着至关重要的作用,因为缺少其中任何一个组成部分的植物都不能制造光合蛋白质,因此也就不能变绿。我们正在仔细研究原子模型,以确定装配的 21 个组件中每个组件的作用。"第一作者Ángel Vergara-Cruces博士说:"现在我们有了一个结构模型,下一步就是确认叶绿体转录蛋白的作用。通过揭示叶绿体转录的机制,我们的研究有助于深入了解叶绿体在植物生长、适应和应对环境条件中的作用。"共同第一作者伊斯卡-普拉马尼克(Ishika Pramanick)博士说:"从极具挑战性的蛋白质纯化开始,到为这一巨大复杂的蛋白质拍摄令人惊叹的低温电子显微镜图像,再到最终看到我们的工作成果的印刷版本,在这一非凡的工作历程中有许多令人惊喜的时刻。"韦伯斯特博士总结道:"高温、干旱和盐度限制了植物进行光合作用的能力。面对环境压力仍能可靠地生产光合蛋白的植物可能会以不同的方式控制叶绿体转录。我们期待看到我们的研究成果被用于开发更强健作物的重要工作中。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人