《Nature》报道北大物理新成果:首次观测到三玻色子联合产生

《Nature》报道北大物理新成果:首次观测到三玻色子联合产生 相关成果发表于《物理评论快报》,并被选为编辑推荐论文。首次观测到三玻色子联合产生先简单了解一下,此次成果发现的主角三种基本粒子。两种电荷相反的粒子W玻色子W+和W-,以及一种光子γ。我们知道,宇宙中有四大基本相互作用:引力作用、电磁相互作用、强相互作用和弱相互作用。每种相互作用都是由某一种媒介粒子传递的,它们被称为玻色子。在标准模型里,无质量的光子(γ)传播长程的电磁相互作用。而W玻色子是一种负责传递弱相互作用的基本粒子。此前曾被发现并证明,W玻色子是参与核聚变的重要粒子。但W玻色子的质量很重,约是质子的85倍,实验中通常很难被发现。只有通过大型强子对撞机LHC这样的高能量装置才有可能“撞”出1个。而要找到像W+W-γ这种形态,更是难上加难。研究团队在LHC上使用紧凑缪子线圈(CMS)探测器筛选和分析了2016年至2018年期间数十亿次13TeV质子-质子对撞数据,以超过5倍标准偏差的统计置信度,首次观测到了双W玻色子与光子(WWγ)这一新型的三玻色子联合产生过程。研究团队进一步向《中国科学报》解释,5.6倍标准偏差是与假设不存在三玻色子过程的情况(即空假设)相比,这也意味着数据支持三玻色子过程的存在。他们进而对希格斯与轻夸克的耦合给出了一批较强的限制性结果。北大物理李强团队据北大物理学院技术物理系官网介绍,此项成果是由李强课题组在CMS国际合作组提出并领导。北京大学物理学院2017级博士研究生安莹(现为德国电子同步加速器中心DESY博士后)担当分析负责人。一直以来,精确测量多玻色子特别是三玻色子联合产生过程,是目前高能对撞机物理领域前沿热点之一,可用于探测非阿贝尔相互作用以及检验标准模型。李强团队自2010年以来,就致力于高能对撞机上的多玻色子物理研究。2022年,他们全球首次实现了三W玻色子共振态的寻找、并开发了3夸克和4夸克特征喷注的鉴别及校准技术。此项研究开拓了新物理寻找的新航线。李强向《中国科学报》表示,高能物理确实处在比较艰难的时期。在人迹罕至的地方探险,虽然有着未知和挑战,但也有着新发现的可能性。参考链接:[1] ... PC版: 手机版:

相关推荐

封面图片

诺贝尔物理学奖得主彼得·希格斯逝世 享年94岁

诺贝尔物理学奖得主彼得·希格斯逝世 享年94岁 希格斯玻色子发现于2012年,是粒子物理学研究中的一件划时代的大事,它在粒子物理的“标准模型”中起关键性作用,被认为是解释其他粒子如何获取质量的关键。值得一提的是,希格斯玻色子直接促成提出该粒子假设的彼得·希格斯与弗朗索瓦·恩格勒获得2013年的诺贝尔物理学奖。作为一个基本粒子,希格斯粒子也有其独特的量子参数,作为自然界基本粒子中唯一的标量玻色子,按照标准模型预言,其自旋为0、宇称为正。 ... PC版: 手机版:

封面图片

大型强子对撞机观测到了顶夸克及其反粒子之间的量子纠缠

大型强子对撞机观测到了顶夸克及其反粒子之间的量子纠缠 粒子物理学中的量子纠缠最近,在安东-蔡林格(Anton Zeilinger)和他的团队首次确证两个光子之间存在纠缠的二十年后,ATLAS 和 CMS 实验报告说,在大型强子对撞机上观测到了同时静止产生的顶夸克及其反粒子之间的量子纠缠。确认最重的基本粒子顶夸克之间的量子纠缠为探索我们世界的量子本质开辟了一条新途径,其能量远远超出了量子光学等领域所能达到的水平。同时,大型强子对撞机上顶夸克对的巨大产生率提供了顶夸克的巨大数据样本,为这些研究提供了独一无二的机会。顶级夸克和反粒子之间的量子纠缠在大型强子对撞机上得到证实,标志着高能量子物理学在大量数据和先进分析方法的支持下取得了重大进展。来源:欧洲核子研究中心爱因斯坦对量子力学的挑战在量子力学中,如果我们知道其中一个粒子在测量另一个粒子时的状态,那么这两个粒子就是纠缠的。即使这两个最初纠缠在一起的粒子在测量前彼此相距很远,情况也是如此。这就是爱因斯坦所说的"超距作用":虽然信息的传播速度不可能超过光速,但在对第一个粒子进行测量时,第二个粒子保证会立即处于相应的状态。1934 年,爱因斯坦和他的合作者提出了一个思想实验,他们认为这个实验揭示了量子力学的不一致性。为了解决这个悖论,他们提出,我们对纠缠的描述是不完整的,系统中还有其他我们无法通过实验获得的量在起作用。那么,纠缠就是我们对这些隐藏变量一无所知的结果。测量纠缠的先进技术在一项新的测量中,CMS 合作小组首次研究了以极快的速度同时产生的顶夸克和顶反夸克的自旋纠缠。因此,这两个粒子在衰变之前相距甚远,也就是说,它们之间的距离大于以光速传输的信息所能覆盖的距离。夸克和反夸克自旋之间的相关性是通过观察它们衰变产物的角度分布来测量的。分析中采用了最先进的机器学习方法,以正确分配顶(反)夸克衰变产物,并改进系统不确定性的建模。图 1 显示了在两个不同运动学区域观察到的纠缠程度,以参数ΔE 为特征。图 1:在两个运动学区域观察到的以ΔE 为特征的纠缠水平。图中显示了测量结果(点)及其不确定性,并与 SM 预测值(红线)进行了比较。水平蓝线对应于夸克和反夸克之间以光速交换信息所能解释的最大纠缠度ΔE临界值。第一个分段对应于产生的横动量小于 50 GeV 的顶夸克,而在最后一个分段中,顶夸克对具有很高的不变质量,即相互之间的运动速度很大。在这两个运动学区域测得的ΔE 都大于 1,证实了两个粒子之间的纠缠。特别是在第二个分区,顶夸克-反夸克对的相对速度非常大,只有 10%的情况下它们才有机会进行交流。在这里,纠缠度明显高于ΔE临界值,而ΔE临界值是在光速下通过隐藏变量进行信息交流所能解释的纠缠度。因此,测量结果表明,在已知最重的粒子之间确实存在"超距作用"。资料来源:欧洲核子研究中心编译自/citechdaily ... PC版: 手机版:

封面图片

诺贝尔奖获得者、物理学家彼得·希格斯教授8日在急性病后去世,享年94岁。

诺贝尔奖获得者、物理学家彼得·希格斯教授8日在急性病后去世,享年94岁。 希格斯等人1964年提出了希格斯机制,W和Z玻色子(传播弱力)和费米子之所以取得质量,是因为希格斯场的作用。欧洲LHC对撞机2012年一次实验,证实希格斯玻色子(希格斯场的激发)存在。希格斯因其工作获得2013年诺贝尔物理学奖。 (爱丁堡大学)

封面图片

AI帮助大型强子对撞机在探测新粒子方面取得突破

AI帮助大型强子对撞机在探测新粒子方面取得突破 ATLAS 和 CMS 协作小组正在使用最先进的机器学习技术来搜索可能预示着新物理学的奇异对撞。图片来源:S Sioni/CMS-PHO-EVENTS-2021-004-2/M Rayner大型强子对撞机(LHC)实验的主要目标之一是寻找新粒子的迹象,这可以解释物理学中的许多未解之谜。通常情况下,寻找新物理学的目的是以理论预测为指导,一次寻找一种特定类型的新粒子。但是,寻找未预测到的、意想不到的新粒子呢?对物理学家来说,在不清楚要寻找什么的情况下筛选大型强子对撞机实验中发生的数十亿次对撞是一项艰巨的任务。因此,ATLAS 和 CMS 协作小组让人工智能(AI)简化了这一过程,而不是梳理数据和寻找异常。在3月26日举行的莫里翁德 会议(Rencontres de Moriond )上,来自CMS合作项目的物理学家们展示了利用各种机器学习技术搜索成对"喷流"所获得的最新成果。这些喷流是源自强相互作用夸克和胶子的粒子的准直喷流。它们特别难以分析,但可能隐藏着新的物理学。被人工智能算法确定为高度异常、因此可能来自新粒子的 CMS 事件之一的事件显示。资料来源:CMS 协作ATLAS 和 CMS 的研究人员在搜索喷流时使用了多种策略来训练人工智能算法。通过研究其复杂能量特征的形状,科学家们可以确定是什么粒子产生了喷流。利用真实的碰撞数据,这两个实验的物理学家正在训练他们的人工智能,以识别源自已知粒子的喷流的特征。然后,人工智能能够区分这些喷流和非典型喷流特征,后者可能预示着新的相互作用。这将在数据集中显示为非典型喷流的累积。另一种方法是指示人工智能算法考虑整个碰撞事件,并在检测到的不同粒子中寻找异常特征。这些异常特征可能预示着新粒子的存在。2023 年7 月,ATLAS 发布的一篇论文展示了这一技术,这是在大型强子对撞机结果中首次使用无监督机器学习技术。在 CMS,一种不同的方法是物理学家创建潜在新信号的模拟示例,然后让人工智能识别真实数据中与常规喷流不同但与模拟相似的碰撞。在 CMS 公布的最新结果中,每种人工智能训练方法对不同类型的新粒子表现出不同的敏感性,没有一种算法被证明是最好的。CMS 团队能够限制产生异常喷流的几种不同类型粒子的产生率。他们还能够证明,与传统技术相比,人工智能主导的算法大大提高了对各种粒子特征的灵敏度。这些结果表明,机器学习正在彻底改变对新物理学的探索。CMS分析团队的奥兹-阿姆拉姆(Oz Amram)说:"我们已经有了进一步改进算法的想法,并将其应用于数据的不同部分,以搜索多种粒子。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

三年改造后,大型强子对撞机再出发

三年改造后,大型强子对撞机再出发 在大型强子对撞机2018-22年关闭期间,ALICE实验中的探测器进行了改造。 对新物理学的追寻再度开启。世界上最强大的粉碎高能粒子机器,大型强子对撞机(LHC),在关闭三年多后重新启动。在日内瓦附近的欧洲核子研究中心CERN,质子束再次在其27公里的环路中呼啸而过。7月,物理学家们启动了实验,观察粒子束的对撞。 在2009-13年和2015-18年的前两个阶段,LHC探索了现在已知的物理世界。所有这些工作包括2012年希格斯玻色子的成功发现再次确定了物理学家目前对塑造宇宙的粒子和力的最佳描述:标准模型。但是,科学家们筛选了以千兆计的高能对撞的碎片,还是没有找到任何令人惊讶的新粒子或其他完全未知的东西的证据。 这一次可能会有所不同。迄今为止,LHC的建造成本为92亿美元,其中包括最新的升级:第三版包含更多的数据、更好的探测器和寻找新物理的创新方法。更重要的是,科学家们会从一个诱人的反常结果清单(比上次运行开始时更多)开始,其中藏着寻找标准模型之外粒子的方向。 ... 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

大型强子对撞机在揭示宇宙基本力方面取得里程碑式进展

大型强子对撞机在揭示宇宙基本力方面取得里程碑式进展 在欧洲核子研究中心的广泛参与基础上,罗切斯特大学团队最近实现了对粒子物理标准模型的重要组成部分电弱混合角的"难以置信的精确"测量。资料来源:塞缪尔-约瑟夫-赫佐格;朱利安-马里乌斯-奥尔丹在探索宇宙奥秘的过程中,罗切斯特大学的研究人员数十年来一直参与欧洲核研究组织(通常称为欧洲核子研究中心)的国际合作。在广泛参与欧洲核子研究中心(CERN)工作,特别是参与 CMS(紧凑渺子螺线管)合作项目的基础上,由乔治-帕克(George E. Pake)物理学教授阿里-博德克(Arie Bodek)领导的罗切斯特团队最近取得了突破性的里程碑成果。他们的成果集中于测量电弱混合角,这是粒子物理标准模型的一个重要组成部分。该模型描述了粒子如何相互作用,并精确预测了物理学和天文学中的大量现象。博德克说:"最近对电弱混合角的测量非常精确,它是通过欧洲核子研究中心的质子碰撞计算得出的,加强了人们对粒子物理学的理解。"CMS合作组织汇集了来自全球各地的粒子物理学界人士,以更好地了解宇宙的基本规律。除博德克外,罗切斯特大学的 CMS 协作小组成员还包括首席研究员、物理学教授 Regina Demina 和物理学副教授 Aran Garcia-Bellido,以及博士后研究助理、研究生和本科生。罗切斯特大学的研究人员作为紧凑渺子螺线管(CMS)协作组的成员,长期在欧洲核子研究中心工作,包括在 2012 年发现希格斯玻色子的过程中发挥了关键作用。资料来源:塞缪尔-约瑟夫-赫佐格;朱利安-马里乌斯-奥尔丹欧洲核子研究中心位于瑞士日内瓦,是世界上最大的粒子物理实验室,以其突破性发现和尖端实验而闻名于世。罗切斯特的研究人员长期在欧洲核子研究中心工作,是 CMS 协作小组的成员之一,包括在2012 年发现希格斯玻色子的过程中发挥了关键作用,这种基本粒子有助于解释宇宙中质量的起源。该合作项目的工作包括收集和分析从欧洲核子研究中心大型强子对撞机(LHC)的紧凑μ介子螺线管探测器收集到的数据,LHC是世界上最大、最强大的粒子加速器。大型强子对撞机由17英里长的超导磁体和加速结构组成,建在地下,横跨瑞士和法国边境。大型强子对撞机的主要目的是探索物质的基本构成元素以及支配它们的力量。为此,它将质子或离子束加速到接近光速,并以极高的能量使它们相互撞击。这些碰撞再现了类似于宇宙大爆炸后几分之一秒的条件,使科学家能够研究粒子在极端条件下的行为。19 世纪,科学家发现电和磁的不同作用力之间存在联系:变化的电场会产生磁场,反之亦然。这一发现构成了电磁学的基础,它将光描述为波,并解释了光学中的许多现象,同时还描述了电场和磁场如何相互作用。在这一认识的基础上,物理学家在 20 世纪 60 年代发现电磁力与另一种力弱力有关。弱力在原子核内运行,负责放射性衰变和太阳能源生产等过程。这一发现促成了弱电理论的发展,弱电理论认为电磁力和弱力实际上是一种统一力的低能表现形式,这种统一力被称为统一弱电相互作用力。希格斯玻色子等重大发现证实了这一概念。最近,欧洲核子研究中心大型强子对撞机上的 CMS 协作小组通过分析数十亿次质子-质子对撞,完成了迄今为止与该理论相关的最精确测量之一。他们的重点是测量弱混合角,这是一个描述电磁力和弱力如何混合在一起产生粒子的参数。以前对电弱混合角的测量曾在科学界引发争论。然而,最新的发现与粒子物理标准模型的预测非常吻合。罗切斯特大学研究生 Rhys Taus 和博士后助理研究员 Aleko Khukhunaishvili 采用新技术最大限度地减少了测量中固有的系统不确定性,从而提高了测量精度。对弱混合角的理解揭示了宇宙中不同的力如何在最小尺度上共同作用,加深了对物质和能量基本性质的理解。博德克说:"自2010年以来,罗切斯特团队一直在开发创新技术并测量这些电弱参数,然后在大型强子对撞机上实施这些技术。"这些新技术预示着对标准模型的预测进行精确测试的新时代已经到来。"编译自/scitechdaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人