NASA遭遇故障的IXPE太空观测设施于4月3日成功恢复了科学运行

NASA遭遇故障的IXPE太空观测设施于4月3日成功恢复了科学运行 IXPE 航天器经过航空电子设备重置后,恢复了对宇宙现象的观测,其中包括一个潜在的吸积黑洞,为了解黑洞吸积做出了贡献。资料来源:美国国家航空航天局此前唯一一次中断 IXPE 科学观测是由于 2023 年 6 月的一个类似问题。利用上次中断后制定的程序,研究小组启动了航天器航空电子设备重置以解决该问题,从而使 IXPE 进入计划的安全模式。研究小组立即开始工作,以尽可能迅速和安全的方式恢复科学运行。IXPE 任务现在正在观测一个新的瞬态 X 射线源Swift J1727.8-161 一个候选吸积黑洞。该源最近开始产生物质喷流,其运动速度仅为光速的一小部分。IXPE 的观测将有助于了解黑洞的吸积,包括揭示相对论喷流是如何形成的。IXPE 于 2021 年发射,它是一个太空观测站,旨在发现一些最极端宇宙天体的秘密超新星爆炸的残余物、中子星、哺育黑洞喷射出的强大粒子流等等。该天文台是美国国家航空航天局(NASA)首个研究来自许多不同类型天体的 X 射线偏振的任务。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

天体物理学家利用模型准确预测了观测到的M87黑洞喷流的形态

天体物理学家利用模型准确预测了观测到的M87黑洞喷流的形态 自从发现喷流以来,包括诺贝尔奖获得者罗杰-彭罗斯爵士在内的许多学者都在研究这些神秘现象的形成。目前,有两种主要模型试图解释喷流的形成:"BZ-喷流模型"是以研究人员布兰福德和兹纳杰克的名字命名的,也是目前最有影响力的模型,它认为喷流是通过与黑洞事件视界相连的磁场线从黑洞中提取自旋能量而形成的。与此相反,第二种模型认为喷流是通过从黑洞的吸积盘中提取旋转能量形成的。后者是在黑洞强大引力作用下围绕黑洞旋转的电离气体的集合。第二种模型可以被称为"圆盘-喷流模型"。尽管其他研究人员已经使用 BZ 射流模型模拟了广义相对论准直外流,实际上也就是射流,但还不清楚 BZ 射流模型能否解释观测到的实际射流的形态,包括其拉长的结构、宽度和边缘增亮(即射流边缘附近亮度增加)。为了研究这两个模型的有效性,中国科学院上海天文台袁峰博士领导的一个国际研究小组计算了这两个模型分别预测的位于室女座巨型星系Messier 87(M87)中心的超大质量黑洞的喷流。研究小组随后将计算结果与对M87喷流的实际观测结果进行了比较,后者被记录在事件地平线望远镜(EHT)首次捕捉到的黑洞图像中。研究小组的研究表明,BZ-喷流模型准确地预测了观测到的M87喷流的形态,而圆盘-喷流模型则难以解释观测结果。该研究发表在《科学进展》(Science Advances)上。模型预测图像与观测图像的对比研究小组首先采用了三维广义相对论磁流体力学(GRMHD)模拟来再现M87喷流的结构。为了计算模拟喷流的辐射并将辐射与观测结果进行比较,辐射电子的能谱和空间分布至关重要。研究小组假设电子加速是通过"磁重联"发生的,即磁能转化为动能、热能和粒子加速的过程。根据这一假设,研究小组结合粒子加速研究的结果,利用动力学理论求解了稳态电子能量分布方程。然后,研究小组获得了模拟射流不同区域的电子能量谱和数量密度。在距离核心的三个距离上,由基准模型预测的边缘增亮(实线)及其与观测数据的比较(虚线)将这些信息与吸积模拟(包括磁场强度、气体等离子体温度和速度)相结合,研究小组获得了可以与实际观测结果进行比较的结果。结果显示,BZ-喷流模型预测的喷流形态与观测到的M87喷流形态非常吻合,包括喷流宽度、长度、边缘增亮特征和速度。相比之下,盘状喷流模型的预测结果与观测结果不一致。此外,研究小组还分析了磁再连接过程,发现它是由于M87黑洞吸积盘中的磁场产生的磁爆发造成的。这些爆发对磁场造成了强烈的扰动,这种扰动可以传播很远的距离,从而导致喷流中的磁重联。这项工作弥合了喷流形成动态模型与各种观测到的喷流特性之间的差距,首次证明 BZ 喷射模型解决了喷流的能量问题,也解释了其他观测结果。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA 宣布成功改变了一颗小行星的运行轨道

NASA 宣布成功改变了一颗小行星的运行轨道 美国国家航空航天局(NASA)周二表示,一个航天器在距离地球数百万英里的地方撞击了一颗无害的小行星,成功地改变其轨道,NASA宣布了其首次此类测试的结果。 美国航天局将双小行星重定向测试("Dart")航天器发射到小行星的轨道上,从而使其偏离轨道。 美国国家航空航天局希望能够偏转任何对地球构成真正威胁的小行星或彗星。 国家航空航天局的管理者,前宇航员和佛罗里达州民主党参议员比尔-纳尔逊说。"我们向世界表明,作为这个星球的捍卫者,NASA是认真的。" 航天局说:Dart是一项防御地球免受潜在小行星或彗星危害的测试。 Dart将Dimorphos小行星的轨道改变了32分钟。格拉兹说,改变轨道周期的最低要求 "实际上只有73秒"。

封面图片

NASA行星猎手罕见地瞥见遥远星系中的两个黑洞

NASA行星猎手罕见地瞥见遥远星系中的两个黑洞 相互环绕的黑洞。两个黑洞都有与之相关的喷流:较大的黑洞呈红色,较小的黑洞呈黄色。通常只能看到红色的喷流,但在 2021 年 11 月 12 日的 12 小时内,较小的喷流占据了主导地位,并发出了来自较小黑洞的直接信号,这也是首次被观测到。资料来源:NASA/JPL-Caltech/R.Hurt (IPAC) & M. Mugrauer (AIU Jena)OJ 287 发现黑洞2021年,美国国家航空航天局的系外行星猎杀卫星对准了OJ 287星系,以帮助天文学家证实该星系中心有两个黑洞的理论,这一理论最早是由芬兰图尔库大学的研究人员提出的。凌日系外行星巡天卫星(TESS)旨在发现数千颗围绕天空中最亮的矮星运行的系外行星。TESS 正在发现从小型岩石世界到巨型行星的各种行星,展示了银河系中行星的多样性。迄今为止,它已发现 410 颗确认的系外行星或环绕太阳以外恒星的"新世界"。NASA 的 TESS 发现了太阳系外的系外行星。在对天空进行长时间观测的过程中,TESS 还发现并监测各类亮度变化的天体,从附近的小行星到脉冲星和包含超新星的遥远星系。资料来源:美国国家航空航天局戈达德太空飞行中心OJ 287中的双黑洞证据2021 年,TESS 花了几周时间研究另一种系统,一个叫做 OJ 287 的遥远星系。研究人员发现,有间接证据表明,OJ 287星系中一个质量非常大的黑洞正围绕着一个比它大100倍的巨型黑洞运行。为了验证较小黑洞的存在,TESS 监测了主黑洞的亮度以及与之相关的喷流。直接观测围绕较大黑洞运行的较小黑洞非常困难,但研究人员通过突然爆发的亮度发现了它的存在。这种事件以前从未在OJ287中观测到过,但芬兰图尔库大学的研究人员Pauli Pihajoki早在2014年就在他的博士论文中预测到了这一事件。根据他的论文,下一次耀斑预计发生在2021年末,当时有几颗卫星和望远镜都在关注这个天体。从卫星观测的光变曲线上看,观测到的爆发出现了急剧的耀斑,显示出一个原本持续暗淡的天体是如何突然急剧变亮的。上角显示了观测到的耀斑的更多细节。爆发发出的光量相当于大约 100 个星系的亮度。资料来源:Kishore 等人,2024 年TESS 卫星于格林尼治标准时间 2021 年 11 月 12 日凌晨 2 点探测到了预期的耀斑,观测结果最近发表在 Shubham Kishore、Alok Gupta(印度 Aryabhatta 观测科学研究所)和 Paul Wiita(美国新泽西学院)的研究报告中。这次活动只持续了 12 个小时。如此短的持续时间表明,除非事先知道爆发的时间,否则很难发现大亮度的爆发。在这种情况下,图尔库研究人员的理论被证明是正确的,TESS 在正确的时间对准了 OJ 287。这一发现也得到了美国宇航局斯威夫特望远镜的证实,该望远镜也对准了同一目标。此外,波兰克拉科夫雅盖隆大学的斯塔塞克-佐拉(Staszek Zola)领导的一个大型国际合作小组通过使用地球不同地区的望远镜探测到了同一事件,因此全天至少有一个望远镜观测点始终是夜晚。此外,斯韦特兰娜-约斯塔德(Svetlana Jorstad)领导的美国波士顿大学小组和其他观测人员通过研究耀斑发生前后的偏振光,证实了这一发现。影响和未来研究图尔库大学的 Mauri Valtonen 教授和他的研究小组在一项新的研究中综合了之前的所有观测结果,结果表明,12 小时的光爆来自轨道上较小的黑洞及其周围环境。当较小的黑洞"吞下"较大黑洞周围吸积盘的一大块,将其转化为向外喷射的气体时,亮度就会快速爆发。小黑洞的气体喷流在大约 12 小时内比大黑洞的气体喷流更亮。这使得 OJ287 的颜色不再是正常的红色,而是偏红或黄色。爆发之后,红色又恢复了。黄色表明在这 12 小时内,我们看到的是来自较小黑洞的光。从 OJ287 在同一时段发出的光的其他特征也可以推断出同样的结果。"因此,我们现在可以说,我们第一次'看到'了一个绕轨道运行的黑洞,就像我们可以说TESS看到了绕其他恒星运行的行星一样。就像行星一样,要直接获得较小黑洞的图像也是极其困难的。"瓦托宁教授说:"事实上,由于 OJ 287 的距离非常远,接近 40 亿光年,我们的观测方法可能还需要很长时间才能发展到足以捕捉到较大黑洞的图像。"印度塔塔基础研究所的 A. Gopakumar 说:"不过,这个较小的黑洞可能很快就会以其他方式揭示它的存在,因为它预计会发射纳赫兹引力波。OJ 287 的引力波应该能在未来几年内被成熟的脉冲星定时阵列探测到。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天空中的粒子加速器:NASA的IXPE探索"微类星体"机制

天空中的粒子加速器:NASA的IXPE探索"微类星体"机制 这张海牛星云的合成图捕捉到了 SS 433 喷出的喷流,SS 433 是一个黑洞,它正在吞噬产生它的超新星残余物中的物质。利用 IXPE 航天器数据进行的新研究,特别是通过对微类星体 SS 433 的研究,揭示了黑洞的粒子加速现象。这项工作揭示了喷流内的磁场与它们的运动是一致的,这与之前的理论相矛盾,增强了我们对这种宇宙现象的理解。研究人员利用美国国家航空航天局(NASA)的IXPE(X射线极坐标成像探测器)航天器的数据得出的最新发现,为科学家们提供了粒子加速如何在这种极端环境中发生的新线索。这些观测数据来自一颗"微类星体",这是一个由黑洞从伴星虹吸物质组成的系统。近距离观察 SS 433这颗微类星体(Stephenson and Sanduleak 433,简称 SS 433)位于天鹰座超新星残余物 W50 的中心,距离地球约 1.8 万光年。SS 433强大的喷流扭曲了残余物的形状,并为它赢得了"海牛星云"的绰号,其速度大约是光速的26%,即每秒超过48000英里。SS 433 于 20 世纪 70 年代末被发现,是迄今为止发现的第一颗微类星体。IXPE 的三个机载望远镜测量 X 射线光的一种特殊性质,即偏振,它告诉科学家 X 射线频率下电磁波的组织和排列情况。X 射线偏振有助于研究人员了解宇宙极端区域内发生的物理过程,如黑洞周围的环境,以及粒子如何在这些区域内加速。残余物发出的无线电波呈蓝绿色,而由 IXPE、XMM-牛顿和钱德拉合成的 X 射线则以明亮的蓝紫色和粉白色为主色调,红外线数据则以红色为背景。黑洞以接近光速的速度喷射出两个方向相反的物质射流,扭曲了残余物的形状。喷流在距离黑洞大约 100 光年的地方变得明亮,粒子在喷流内部的冲击下被加速到非常高的能量。IXPE 数据显示,在粒子加速过程中起关键作用的磁场与喷流平行排列这有助于我们了解天体物理喷流是如何将这些粒子加速到高能量的。突破性发现和对未来的影响IXPE 在 2023 年 4 月和 5 月花了 18 天时间研究 SS 433 东叶的一个这样的加速点,高能电子在磁场中螺旋运动产生了辐射这一过程被称为同步辐射。"IXPE数据显示,加速区域附近的磁场指向喷流移动的方向,"美国宇航局位于阿拉巴马州亨茨维尔的马歇尔太空飞行中心的天体物理学家菲利普-卡亚雷特(Philip Kaaret)说,他是IXPE任务的首席研究员,也是SS 433上一篇关于研究结果的新论文的主要作者。他说:"通过 IXPE 看到的高水平极化表明,磁场是有序的,至少有一半的磁场朝同一方向排列。"他说,这一发现出乎意料。研究人员长期以来一直认为,喷流与星际介质(恒星之间的气体和尘埃环境)之间的相互作用很可能会产生冲击,从而导致磁场紊乱。美国国家航空航天局的成像 X 射线极化探测器(IXPE)。资料来源:美国国家航空航天局卡亚雷特说,这些数据提出了一种新的可能性当强大的喷流与星际物质碰撞时,它们内部的磁场可能会被"困住"并被拉伸,从而直接影响它们在粒子加速区域的排列。自 20 世纪 80 年代以来,研究人员就推测 SS 433 的喷流起到了粒子加速器的作用。2018年,墨西哥普埃布拉高空水切伦科夫天文台的观测人员验证了喷流的加速效应,科学家们利用美国宇航局的NuSTAR(核光谱望远镜阵列)和欧洲航天局的XMM-牛顿天文台精确定位了加速区域。随着研究人员继续评估 IXPE 的发现并研究太空中的新目标,其数据还有助于确定相同的机制是否会使各种现象从超新星残留物中流出的黑洞喷流到从爆发的恒星(如耀斑)中喷出的碎片所排出的外流中的磁场保持一致。IXPE 任务的意大利首席研究员保罗-索菲塔(Paolo Soffitta)说:"IXPE 的 X 射线偏振计的成像能力使这一非常精细的测量成为可能,从而在距离中心黑洞 95 光年的喷流小区域内探测到了微弱信号。"这篇新论文详细介绍了 IXPE 在 SS 433 上的观测情况,发表在最新一期的《天体物理学报》上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA实时揭秘:看看韦伯和哈勃现在正在观测什么

NASA实时揭秘:看看韦伯和哈勃现在正在观测什么 美国国家航空航天局(NASA)的"太空望远镜直播"(Space Telescope Live)提供有关哈勃和詹姆斯-韦伯太空望远镜观测的实时更新和全面详情,增强公众对天文研究的参与和了解。来源:美国国家航空航天局NASA 的 Space Telescope Live 由马里兰州巴尔的摩的太空望远镜科学研究所设计和开发,它提供了当前和即将进行的观测细节的内部访问:不仅包括每台望远镜正在观测的内容,还包括目标在天空中的位置、数据收集的方式以及研究人员希望回答的问题。识别、定位和放大显示最新目标的地图。回转到下一个目标,再回到上一个目标。监控时间表。查看科学仪器。查看昨天的观测情况,研究计划书,还可以查看哈勃和韦伯过去观测的全部目录。詹姆斯-韦伯太空望远镜艺术家概念图。资料来源:美国国家航空航天局要知道美国宇航局的哈勃和詹姆斯-韦伯太空望远镜过去观测到了什么并不难。美国国家航空航天局(NASA)多产的天文观测台所捕捉到的图像、光谱和其他数据,几乎每周都会带来宇宙大发现的消息。但哈勃和韦伯此时此刻在看什么呢?孕育着新生恒星的朦胧星柱?一对相撞的星系?一颗遥远行星的大气层?在130亿年的太空之旅中被拉伸和扭曲的银河系光线?美国国家航空航天局(NASA)的"太空望远镜直播"(Space Telescope Live)是一个最初于2016年开发的网络应用程序,用于提供哈勃目标的实时更新,现在可以方便地访问哈勃和韦伯当前、过去和即将进行的观测的最新信息。这一探索性工具由巴尔的摩的太空望远镜科学研究所为美国国家航空航天局设计和开发,为公众提供了一种直观、吸引人的方式,让他们更多了解天文调查是如何进行的。哈勃太空望远镜在轨插图。来源:美国国家航空航天局通过重新设计的用户界面和扩展的功能,用户不仅可以了解每台望远镜目前正在观测的行星、恒星、星云、星系或深空区域,还可以了解这些目标在天空中的确切位置;正在使用哪些科学仪器来捕捉图像、光谱和其他数据;观测的确切时间和持续时间;观测的状态;谁在领导这项研究;以及最重要的是,科学家们正在试图发现什么。经批准的科学计划的观测信息可通过空间望远镜米库尔斯基档案馆(Mikulski Archive for Space Telescopes)获取。美国国家航空航天局的太空望远镜实时系统(Space Telescope Live)提供了获取这些信息的便捷途径不仅包括当天的目标,还包括过去观测的整个目录韦伯望远镜的记录可以追溯到 2022 年 1 月的首个调试目标,而哈勃望远镜的记录则可以追溯到 1990 年 5 月开始运行时。以目标位置为中心的可缩放天空图是利用Aladin 天空图集绘制的,并配有地面望远镜的图像,为观测提供背景信息。(由于哈勃望远镜和韦伯望远镜的数据在向公众和天文学界发布之前必须经过初步处理,在许多情况下还必须经过初步分析,因此本工具中没有这两台望远镜的实时图像)。目标名称和坐标、计划开始和结束时间以及研究课题等详细信息直接来自观测调度和建议规划数据库。该工具内的链接可引导用户访问原始研究计划,作为获取更多技术信息的入口。美国国家航空航天局最新版本的"太空望远镜直播"与上一版本相比发生了重大转变,但该团队已在收集用户反馈,并计划推出更多增强功能,以提供更深入的探索和了解机会。NASA 的"太空望远镜直播"可在台式机和移动设备上运行,并可通过 NASA 的哈勃和韦伯官方网站访问。编译自:ScitechDaily ... PC版: 手机版:

封面图片

陀螺仪故障已修复,哈勃太空望远镜重新开始科学观测任务

陀螺仪故障已修复,哈勃太空望远镜重新开始科学观测任务 美国宇航局今天发布新闻稿,宣布哈勃天空望远镜已经“重返工作岗位”,重新开始科学观测任务。 此前哈勃太空望远镜辅助转向的 3 个陀螺仪中,11 月 19 日其中 1 个返回错误读数,让其进入安全模式。 团队发现问题之后迅速采用行动,修复了这个问题。但陀螺仪并不稳定,导致系统在 11 月 21 日和 11 月 23 日两次进入安全模式。 美国宇航局随后宣布暂停哈勃太空望远镜的观测任务,团队在经过远程数据调校之后,让所有三个陀螺仪再次恢复正常运行。 美国宇航局表示“3 号宽视场相机”(Wide Field Camera 3)和“高级测量相机”(Advanced Camera for Surveys,)两个主要相机,已经于本周五恢复了科学观测。 该团队计划在本月晚些时候恢复“宇宙起源光谱仪”( Cosmic Origins Spectrograph)和“太空望远镜成像光谱仪”(Space Telescope Imaging Spectrograph )的运行。 消息来源:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人