“中国天眼”揭示快速射电暴的表现与太阳耀斑的区别

“中国天眼”揭示快速射电暴的表现与太阳耀斑的区别 “中国天眼”FAST的强大观测能力结合创新的分析方法,能够深入刻画宇宙间的神秘爆发信号,有望最终揭示其起源。4月12日,该研究在“中国科技期刊卓越行动计划”综合性期刊《科学通报》上作为封面文章发表。快速射电暴是一种来自宇宙深处短暂而强烈的无线电波爆发。就像它的名字一样,快速射电暴在千分之一秒的时间内能够释放巨大的能量,足够驱动人类社会万亿年。2007年,人们第一次发现快速射电暴,但至今为止,人们还不知道这些强大的能量是如何产生的。科学家猜测蕴含着极高能量密度的所谓致密天体,比如中子星或者黑洞,很有可能是快速射电暴的起源。中子星的信号像灯塔一样,规律地扫过地球,非常稳定。如果快速射电暴也是由这样的天体发射出来的,那么能否看到规律出现的快速射电暴信号呢?遗憾的是,以往的诸多研究中,寻找快速射电暴在毫秒到秒量级的周期的努力都失败了。这要求我们重新考虑快速射电暴的发射方式。《科学通报》杂志同期发表了快速射电暴领域理论专家美国内华达大学张冰教授的点评文章,称“这一创新方法促使理论家深入思考爆发现象的物理机制,从而进一步应用于FAST的大数据集合,检验其揭示的物理规律的普适性。” ... PC版: 手机版:

相关推荐

封面图片

“中国天眼”FAST 已经发现了 883 颗脉冲星

“中国天眼”FAST 已经发现了 883 颗脉冲星 图片截自央视新闻频道那么,脉冲星究竟是什么?为什么要大费周章地找,找到以后又有什么用呢?今天咱们就来仔细聊聊,顺便再跟大家分享点关于 FAST 的小八卦。脉冲星是指疯狂闪烁的星吗?先说说“脉冲星”。从地球看来,脉冲星是周期性地闪烁电磁脉冲的天体,脉冲间隔极短,从几毫秒到上百秒不等。不过,脉冲星并不是真的在闪烁,所谓脉冲,只是脉冲星以发疯般的速度旋转造成的假象。那脉冲星是怎么来的呢?其实是恒星“内心拉扯”的结果。我们肉眼能看到的“正常”恒星,内部都有两股力量在相互抗衡:引力驱使恒星物质向核心坠落,而核聚变释放的能量则把物质向外推。核聚变的燃料总有用完的一天,所以引力总能最终赢得这场角力。当一颗大质量恒星(例如,超过 8 倍太阳质量)最终耗尽所有燃料时,它就会向中心坍缩,发生猛烈的内爆,再向外弥散,迸发出一朵绚烂的“烟花”。这个过程叫做“超新星爆发”。北宋至和元年(1054 年),金牛座的“天关”星宿附近爆发过一颗超新星,白天可见 23 天,夜晚可见 22 个月。这起超新星爆发被中国的天文学家记录下来,史称“天关客星”。尘烟散去,在恒星原来的位置,可能会留下一颗非常致密的天体中子星。在其内部,原子结构不复存在,电子被压入原子核,与质子结合为中子。中子星的质量超过 1.4 个太阳,直径却只有十几公里。换句话说,每立方厘米的中子星物质,相当于全球人类的质量总和!中子星还继承了恒星残余质量的旋转角动量。在同样的角动量下,转速与半径的平方成反比。我们每每看到,冰舞运动员在旋转时把双臂收拢或举到头顶,就会猛然滴溜溜地转得飞快。同理,当恒星坍缩为中子星后,转速会成亿倍地飙升。脉冲星的射电脉冲扫过地球。Michael Kramer制作中子星具有强磁场,驱动其周围的带电粒子,发出强烈的射电辐射束,从它的两个磁极喷涌而出。如果随中子星自转的辐射束正好扫过地球,我们就能测到周期性的射电脉冲,就好比某些迪厅的特效灯总是在转圈圈,虽然灯光一直开着,但从一个方向看过去就时亮时暗。嗯,这么一比喻,那脉冲星可以说属于是恒星的遗体在自己坟头蹦迪了……前面提过的天关客星,就留下了一颗周期 33 毫秒(每秒自转 30 圈)的脉冲星,抛散出的渐冷烟花则是著名的蟹状星云。蟹状星云。图源NASA在全球发现的 3000 多颗脉冲星中,绝大多数是中子星,但也有 2 颗是白矮星(还保有原子结构的低质量恒星遗骸):天蝎座 AR 和宝瓶座 AE。FAST 可不是“快”的意思大部分脉冲星在可见光波段没有显著辐射,而在射电波段看起来比较亮。幸运的是,在地球这边,大气层对射电波段相当优待,透明度极高,所以射电望远镜特别适合在地面上观测脉冲星。地球大气层对各波长电磁波的屏蔽。图源 NASA接下来就说说咱们的 FAST。FAST 的名字来自“500 米口径球面射电望远镜”(Five-hundred-meter Aperture Spherical radio Telescope)的英文缩写。这座巨型单碟射电望远镜坐落在贵州省平塘县大窝凼(dàng),依照喀斯特地貌的天然洼地而建,2011 年开工,2016 年落成,是目前世界第一大的全口径均有反射面的射电望远镜(俄罗斯的 RATAN-600 口径虽有 576 米,却只有细细一圈反射环)。FAST 鸟瞰。图源 FAST 官网顺便说说,大家可能觉得 FAST 这个缩写听起来很酷,而全称却显得太直白了。没办法,“缩写不明觉厉,全称真没创意”这是天文界的传统,比如 TMT 是“30 米望远镜”,VLT 是“甚大望远镜”,ELT 是“特大望远镜”,EELT 是“欧洲特大望远镜”。韦布空间望远镜听起来是不是还算正常?可它最初的名字其实是“下一代空间望远镜”(相对于哈勃而言)……为什么射电望远镜都这么大?这是因为在相同的分辨率需求下,要观测的波长越长,“锅”的口径就得越大,不然就看不清了。在红外波段工作的韦布望远镜比主攻可见光的哈勃望远镜口径要大(6.5 米 vs 2.4 米),而射电望远镜要观测的波段,比这俩还要高 5、6 个数量级,那是真非往大了整不可了,口径就是正义用在这里是一点都没错。细心的读者可能还有两个疑问:①球面实际上无法将遥远星光汇聚到单一焦点,得用抛物面才行,FAST 为何要做成球面望远镜?②一口大锅这么摆在地上,岂不是只盯着天顶一点,就算随着地球自转,也只能扫描天顶所在的这个圆?实际上,这是一个常见的误解,也是科普的时候使用简略类比带来的负面影响。因为形状的关系,我们很喜欢把各类射电望远镜称为“锅”。但是这样一来,我们的思维也会被误导,容易觉得 FAST 也像咱们家炒菜的大铁锅一样,硬邦邦一整个,形状不会改变,但实际上,FAST 的身段灵活得很。FAST 由 4450 片反射板拼成,通过电机驱动,这些反射板能够改变姿态,当一片区域的反射板在统一指挥下规律地调整,就能在“锅”里泛起一片“涟漪”,改变镜面的形状。经“FAST 之父”南仁东和团队的计算,只需和球面偏离 0.47 米,就可以把口径 300 米的球面改成抛物面,把射电信号聚焦在一点。所以,在任意时刻,FAST 只有一片口径 300 米的圆形工作区域。通过反射板的齐心协力地调整,这个工作区能在“锅”里自如“漂移”,所以可观测天区的范围相当广。倘若保持完整的 300 米口径,能从北纬 52.2°(工作区紧贴锅南沿)观测到南纬 0.6°(工作区紧贴锅北沿)。如果愿意牺牲一点有效口径,则可以覆盖北纬 65.8° 到南纬 14.2° 的天空。FAST 光路,黄色虚线是抛物面工作区·图源南仁东《FAST项目介绍》观测脉冲星有什么实际应用?FAST 发现这么多脉冲星,那么观测脉冲星有什么实际应用?它的用处还真不少。当脉冲星发来的信号穿越星际时,会被沿途的电离气体阻碍,造成延迟。路程越长,电离气体越多,迟到越厉害。如果知道了脉冲星离我们有多远,再通过精密测量延迟的程度,就能反推信号沿途的星际介质分布情况。影响脉冲星信号的还有磁场,当电磁信号经过磁场时,它的偏振属性会被改变,磁场越强,改变幅度越大。测量信号的偏振,能够反推信号沿途的磁场分布情况。当超大质量天体扰动时空时,会产生引力波,改变脉冲星信号到达我们的时间。所以通过精确测量脉冲星周期的起伏,可以探测引力波。倘若能发现脉冲星-黑洞双星系统,观测一个稳定输出的天体和一个扭曲时空的天体如何搅拌乾坤,就更能检验广义相对论的预言,大大推动基础物理研究。脉冲星的自转周期非常稳定,有些在长期表现上堪与原子钟媲美,并且它们“永不断电”,可比原子钟皮实多了。将脉冲星和原子钟结合起来,可以建立长时间稳定的精准时间系统,甚至用于星际导航。旅行者“地球之声”金唱片左下方以14颗脉冲星指示太阳系的方位。图源NASA最后总结一下,FAST和它发现的脉冲星们,会帮助我们更好地认识宇宙,而这些发现,说不定有朝一日还能够帮助人类在星海中航行。 ... PC版: 手机版:

封面图片

天文学家首次成功测量了太空中快速运动的喷流速度

天文学家首次成功测量了太空中快速运动的喷流速度 这幅艺术家的印象图描绘了中子星上的核爆炸如何为从其磁极区喷射出的喷流提供能量。前景右侧中央有一个非常明亮的白球,代表中子星。白色/紫色细丝从它的极区流出。球的周围是一个朦胧的白色大球,即日冕,再往外则是一个圆盘,圆盘上有不同颜色的同心带,从圆盘内部的白色到中间的橙色,再到外部的红-洋红。一条橙色带将圆盘的外围部分与左上角的一个黄色-橙色-红色的大球体部分连接起来。这代表了中子星的伴星,为明亮的白色球体周围的圆盘提供能量。资料来源:Danielle Futselaar 和 Nathalie Degenaar,阿姆斯特丹大学安东-潘内科克研究所共同作者、华威大学物理系华威奖研究员雅各布-范登-艾因登(Jakob van den Eijnden)说:"爆炸发生在中子星上,中子星密度惊人,因其巨大的引力而臭名昭著,这种引力使中子星从周围环境中吞噬气体只有黑洞才能超越这种引力。""这些物质大部分是来自附近一颗环绕运行的恒星的氢,它们向坍缩的恒星旋转,像雪一样落在恒星表面。随着越来越多的物质倾泻而下,引力场将其压缩,直至引发失控核爆炸。爆炸冲击喷流,喷流也从下坠的物质中喷射而出,并以极高的速度将粒子射入太空"。研究小组设计了一种方法,通过比较澳大利亚望远镜紧凑阵列(由澳大利亚国家科学机构CSIRO拥有和运营)和欧洲航天局(ESA)的Integral卫星接收到的X射线和无线电信号,来测量喷流的速度和特性。共同作者、意大利巴勒莫国家天体物理研究所的托马斯-罗素说:"这为我们提供了一个完美的实验。我们有一个非常短暂的额外物质脉冲,它被射入喷流中,我们可以跟踪它在喷流中的移动,了解它的速度。"这段艺术动画展示了中子星上的核爆炸如何为其磁极区喷射出的射流提供能量。当中子星与另一颗恒星在轨道上运行时,中子星强大的引力场会"吸走"附近伴星的物质。这些物质卷向坍缩的天体,围绕着它形成一个圆盘,最终坠落到天体表面。中子星表面猛烈撞击的引力会压缩积累的物质(主要由氢组成),导致失控核爆炸。这反过来又引发喷流突然加强,并以极高的速度将粒子喷射到太空中。图片来源:ESA - 欧洲航天局 鸣谢:D:阿姆斯特丹大学的 D. Futselaar 和 N. Degenaar。工作由 ATG Medialab 根据与欧空局的合同完成Jakob van den Eijnden 补充说:"这些爆炸每隔几个小时就会发生一次,但无法准确预测它们发生的时间。因此必须长时间盯着望远镜观测,希望能捕捉到几次爆发。在三天的观测中,我们看到了 10 次爆炸和喷射点亮。"喷射的飞行速度约为每秒 11.4 万公里,是光速的 35-40%,快得令人难以置信。这是天文学家第一次能够预测并直接观察到一定量的气体是如何被导入喷流并加速进入太空的。共同作者、荷兰阿姆斯特丹大学的 Nathalie Degenaar 继续说:"根据以前的数据,我们认为爆炸会破坏射流发射的位置。但我们看到的情况恰恰相反:喷流的输入量很大,而不是中断。"研究人员认为,中子星和黑洞的质量和旋转也会对喷流产生影响。现在,这项研究已经证明这是可能的,它将为未来研究中子星及其喷流的实验提供蓝本。超新星爆炸和伽马射线暴等灾难性事件也会产生喷流。这项新成果将在许多宇宙研究中具有广泛的适用性。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国天眼首席科学家获颁马塞尔·格罗斯曼奖

中国天眼首席科学家获颁马塞尔·格罗斯曼奖 “中国天眼”首席科学家李菂获颁马塞尔·格罗斯曼奖个人奖,成为首位凭借国内学术成果获得马塞尔·格罗斯曼奖的中国科学家。 综合人民网和中新社报道,第17届马塞尔·格罗斯曼会议于7月7日至12日在意大利东部城市佩斯卡拉举办。大会当地时间9日向李菂颁发马塞尔·格罗斯曼奖,表彰其领导最灵敏射电望远镜项目作出的开创性贡献,实现星际磁场的精确测量,推动快速射电暴研究进入高统计性时代。 会议主办方之一、国际相对论天体物理中心网络主任雷莫·鲁菲尼说,李菂和“中国天眼”(500米口径球面射电望远镜,FAST)为天文研究作出显著贡献,将激励更多后来者参与研究事业。 李菂说,人类拥有同一片天空,天文学的国际开放是必然。加强中欧合作,特别是双方天文数据的开放共享,能够极大地促进前沿探索。 瑞士数学家马塞尔·格罗斯曼曾在爱因斯坦建立广义相对论的过程中提供了重要的数学帮助,以其名字命名的马塞尔·格罗斯曼奖是国际物理学界重要的奖项之一。 该奖由国际相对论天体物理中心于1985年设立,在每三年一次的马塞尔·格罗斯曼会议期间颁发。该奖设有个人奖和机构奖,此前荣获个人奖的华人科学家包括杨振宁、李政道和丘成桐。 2024年7月11日 10:02 PM

封面图片

比一千个太阳还亮 科学家揭示恒星超级耀斑异常行为背后的物理学原理

比一千个太阳还亮 科学家揭示恒星超级耀斑异常行为背后的物理学原理 太阳耀斑和超级耀斑的物理原理被认为是相同的:磁能的突然释放。超级耀斑恒星具有更强的磁场,因此耀斑也更亮,但有些恒星却表现出一种不寻常的行为最初亮度增强,持续时间很短,随后出现持续时间更长但强度较低的二次耀斑。夏威夷大学天文研究所博士后研究员杨凯和副教授孙旭东领导的研究小组建立了一个模型来解释这种现象,该模型发表在《天体物理学报》上。"通过将我们学到的有关太阳的知识应用到其他更冷的恒星上,我们能够确定驱动这些耀斑的物理原理,尽管我们永远无法直接看到它们,"杨说。"这些恒星的亮度随时间的变化实际上帮助我们'看到'了这些耀斑,它们实在是太小了,无法直接观测到。"人们认为这些耀斑中的可见光只来自恒星大气的下层。磁重联产生的能量粒子从高温、脆弱的日冕(恒星的外层)降下,加热这些层。最近的研究假设,超级耀斑恒星也能探测到来自日冕环的辐射被太阳磁场困住的热等离子体,但这些环的密度必须非常高。遗憾的是,天文学家没有办法对此进行测试,因为除了我们自己的太阳之外,没有办法在其他恒星上看到这些环。太阳动力学天文台拍摄的太阳日冕环图像,显示了"日冕雨"现象。图中还包括一张地球的图像,以提供日冕环的比例,日冕环比地球大 10 多倍。图片来源:美国宇航局太阳动力学天文台/科学可视化工作室/汤姆-布里奇曼其他天文学家利用开普勒望远镜和 TESS 望远镜的数据,发现恒星有一条奇特的光曲线类似于天体的"峰突",即亮度的跳跃。事实证明,这种光曲线与太阳现象相似,即在最初的爆发之后会出现第二个更渐进的峰值。这些光曲线让我们想起了我们在太阳上看到的一种现象,叫做太阳晚期耀斑。研究人员问道:"同样的过程能量化的大型恒星环能否在可见光下产生类似的晚期亮度增强?"为了解决这个问题,杨改编了经常用于模拟太阳耀斑环的流体模拟,并放大了环的长度和磁能。他发现,耀斑的巨大能量输入会将大量质量泵入环路,从而产生密集、明亮的可见光发射,这与预测的结果不谋而合。这些研究表明,只有当超高温气体在环的最高处冷却下来时,我们才能看到这种"撞击"闪光。在重力的作用下,这些发光物质会下落,形成我们所说的"日冕雨",这就是我们在太阳上经常看到的现象。这让研究小组确信,这个模型一定是真实的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

史上最亮伽玛射线暴GRB 221009A正在挑战元素形成理论

史上最亮伽玛射线暴GRB 221009A正在挑战元素形成理论 艺术家绘制的 GRB 221009A 可视图,显示了产生 GRB 的狭长相对论喷流从中央黑洞喷出以及通过超新星爆炸喷出的原始恒星不断膨胀的残骸。西北大学博士后研究员彼得-布兰查德(Peter Blanchard)和他的团队利用詹姆斯-韦伯太空望远镜首次探测到了这颗超新星,证实了GRB 221009A是一颗大质量恒星坍缩的结果。该研究的合著者还发现,该事件发生在其宿主星系的密集恒星形成区域,如背景星云所描绘的那样。图片来源:Aaron M. Geller / Northwestern / CIERA / IT Research Computing and Data Services研究人员推测,铂和金等重元素的证据可能就存在于这颗新发现的超新星中。然而,广泛的搜索并没有发现这类元素的特征。宇宙中重元素的起源仍然是天文学最大的悬而未决的问题之一。这项研究成果于4月12日发表在《自然-天文学》杂志上。西北大学的彼得-布兰查德(Peter Blanchard)是这项研究的负责人,他说:"当我们确认GRB是由一颗大质量恒星的坍缩产生的时候,我们就有机会检验宇宙中一些最重元素是如何形成的。我们没有看到这些重元素的特征,这表明像B.O.A.T.这样能量极高的GRB不会产生这些元素。这并不意味着所有的GRB都不会产生这些元素,但这是我们继续了解这些重元素来源的一个关键信息。JWST未来的观测将确定B.O.A.T.的'正常'表兄弟是否会产生这些元素。"布兰查德是西北大学天体物理学跨学科探索与研究中心(CIERA)的博士后,研究超光速超新星和GRB。这项研究的共同作者来自哈佛大学天体物理学中心和史密森尼天文台、犹他大学、宾夕法尼亚州立大学、加州大学伯克利分校、荷兰 Radbound 大学、太空望远镜科学研究所、亚利桑那大学/斯图尔特天文台、加州大学圣巴巴拉分校、哥伦比亚大学、Flatiron 研究所、格赖夫斯瓦尔德大学和圭尔夫大学。第二作者、哈佛大学天体物理学中心(Center for Astrophysics | Harvard & Smithsonian)的阿什利-维拉尔(Ashley Villar)说:"这一事件尤其令人兴奋,因为有人曾假设,像B.O.A.T.这样的高能伽马射线暴可能会产生大量的重元素,比如金和铂。"如果他们是正确的,B.O.A.T.应该是一座金矿。令人震惊的是,我们并没有看到这些重元素的任何证据。"B.O.A.T. 的诞生2022年10月9日,当它的光芒照耀地球时,B.O.A.T.是如此明亮,以至于世界上大多数伽马射线探测器都被它的光芒所淹没。这次强烈的爆炸发生在距离地球约 20 亿光年远的人马座方向,持续了几百秒钟。当天文学家们争先恐后地观测这一令人难以置信的明亮现象的起源时,他们立刻被一种敬畏感所击中。西北大学温伯格艺术与科学学院物理学和天文学副教授、CIERA成员方文辉当时说:"只要我们能够探测到GRB,那么毫无疑问,这个GRB是我们目睹过的最亮的GRB,亮度达到了10倍或更多。"布兰查德说:"这次事件产生了一些专门用于探测伽马射线的卫星所记录到的最高能量的光子。这是地球每一万年才能看到一次的事件。我们很幸运生活在这样一个时代,我们拥有探测宇宙中发生的这些爆发的技术。能够观测到 B.O.A.T.这样罕见的天文现象,并努力了解这一特殊事件背后的物理学原理,实在是太令人兴奋了。"一颗"正常"超新星布兰查德、维拉尔和他们的团队并没有立即对这一事件进行观测,而是希望在它的后期阶段对其进行观测。在最初探测到伽马射线暴约六个月后,布兰查德和维拉尔利用 JWST 对其后期进行了观测。布兰查德说:"GRB是如此明亮,以至于在爆发后的最初几周和几个月里,它掩盖了任何潜在的超新星特征。在这些时间里,GRB的所谓余辉就像一辆汽车的前大灯直射向你,让你无法看到汽车本身。因此,我们必须等待余辉明显减弱,才有机会看到超新星。"维拉尔说:"我们很幸运,因为 JWST 刚刚发射,可以进行这些观测。银河恰好位于 B.O.A.T. 的前方,它的尘埃挡住了我们通常能看到的所有蓝光。JWST 可以穿透这些尘埃,让我们看到令人难以置信的红外线。"研究小组利用 JWST 的近红外摄谱仪发现了超新星中钙和氧等元素的典型特征。令人惊讶的是,它并不特别明亮就像它所伴随的亮度惊人的GRB一样。布兰查德说:"它并不比以前的超新星更亮。与其他能量较低的GRB相关的超新星相比,它看起来相当正常。你可能会认为,产生高能量和高亮度 GRB 的同一颗坍缩恒星也会产生高能量和高亮度的超新星。但事实证明并非如此。我们看到的这个GRB亮度极高,但却是一颗普通的超新星。"失踪:重元素在首次确认了超新星的存在之后,布兰查德和他的合作者接着寻找其中重元素的证据。目前,天体物理学家对宇宙中能够产生比铁更重的元素的所有机制的了解还不全面。产生重元素的主要机制快速中子俘获过程需要高浓度的中子。迄今为止,天体物理学家只在两颗中子星的合并中证实了通过这一过程产生重元素,激光干涉引力波天文台(LIGO)在2017年探测到了这一碰撞。但科学家们说,一定还有其他方法可以产生这些难以捉摸的物质。宇宙中的重元素实在太多了,而中子星合并却太少。"很可能还有另一个来源,"布兰查德说。"双中子星合并需要很长的时间。双星系统中的两颗恒星首先必须爆炸,留下中子星。然后,这两颗中子星需要数十亿年的时间慢慢靠近,最终合并。但是,对非常古老恒星的观测表明,在大多数双中子星来得及合并之前,宇宙的某些部分就已经富含重金属了。这为我们指出了另一种渠道。"天体物理学家推测,重元素也可能是由快速旋转的大质量恒星坍缩产生的,而这种恒星正是产生B.O.A.T.的恒星。利用JWST获得的红外光谱,布兰查德研究了超新星的内层,重元素应该是在这里形成的。"恒星的爆炸物质在早期是不透明的,所以你只能看到外层,"布兰查德说。"但一旦它膨胀并冷却,就会变得透明。然后你就能看到来自超新星内层的光子了。此外,不同元素吸收和发射的光子波长不同,这取决于它们的原子结构,因此每种元素都有独特的光谱特征,因此,通过观察天体的光谱,我们可以知道天体中含有哪些元素。在检查B.O.A.T.的光谱时,我们没有看到任何重元素的特征,这表明像GRB 221009A这样的极端事件并不是主要来源。在我们继续尝试确定最重元素形成的地方时,这是至关重要的信息。"为何如此明亮?为了将超新星的光线与它之前的明亮余辉的光线区分开来,研究人员将 JWST 的数据与智利阿塔卡马大毫米波/亚毫米波阵列(ALMA)的观测数据进行了配对。"即使在爆发被发现几个月后,余辉的亮度也足以在JWST光谱中贡献大量的光,"犹他大学物理和天文学助理教授、该研究的合著者Tanmoy Laskar说。"结合两台望远镜的数据,有助于我们准确测量 JWST 观测时余辉的亮度,使我们能够仔细提取超新星的光谱"。虽然天体物理学家们还没有发现一颗"普通"超新星和破纪录的 GRB 是如何由同一颗坍缩恒星产生的,但拉斯卡尔说,这可能与相对论射流的形状和结构有关。当快速旋转的大质量恒星坍缩成黑洞时,它们会产生物质喷流,以接近光速的速度喷出。如果这些喷流很窄,就会产生更集中、更明亮的光束。拉斯卡尔说:"这就像把手电筒的光束聚焦到一个狭窄的柱子上,而不是把宽大的光束冲过整面墙。事实上,这是迄今为止看到的伽马射线暴中最窄的射流之一,这给了我们一个提示,为什么余辉会如此明亮。可能还有其他因素,研究人员将在未来几年研究这个问题。"未来对B.O.A.T.所在星系的研究也可能提供更多线索。 PC版: 手机版:

封面图片

钱德拉X射线天文台与VLA揭示银河黑洞快速旋转扭曲时空的现象

钱德拉X射线天文台与VLA揭示银河黑洞快速旋转扭曲时空的现象 这幅艺术家绘制的插图显示了银河系中心超大质量黑洞和周围物质的横截面。中心的黑色球体代表黑洞的事件穹界,也就是不归点,任何东西,甚至光,都无法从这里逃逸。从侧面看旋转的黑洞,如图所示,周围的时空形状就像一个美式足球。两侧的黄橙色物质代表围绕黑洞旋转的气体。这些物质不可避免地向黑洞坠落,一旦落入足球形状的内部,就会穿过事件穹界。因此,足球形状内、事件视界外的区域被描绘成一个空腔。蓝色圆球表示从旋转黑洞两极射出的喷流。图片来源:NASA/CXC/M.Weiss这幅艺术家绘制的插图描绘了一项关于银河系中心的超大质量黑洞人马座 A*(简称 Sgr A*)的最新研究结果。这项研究结果发现,Sgr A* 的旋转速度非常快,以至于它正在扭曲时空也就是时间和空间的三个维度使它看起来更像一个足球。这些结果是由美国国家航空航天局的钱德拉X射线天文台和美国国家科学基金会的卡尔-G-扬斯基甚大阵列(VLA)共同完成的。研究小组采用了一种新方法,利用X 射线和无线电数据,根据物质流向和流出黑洞的方式来确定 Sgr A* 的旋转速度。他们发现Sgr A*的旋转角速度约为最大可能值的60%,角动量约为最大可能值的90%。黑洞有两个基本特性:质量(重量)和自旋(旋转速度)。确定这两个值中的任何一个,都能让科学家们对任何黑洞及其行为方式了如指掌。过去,天文学家曾使用不同的技术对Sgr A*的旋转速度进行过几次估算,结果从Sgr A*完全不旋转到几乎以最大速度旋转不等。新的研究表明,Sgr A*实际上正在快速旋转,这导致它周围的时空被挤压。图中显示的是 Sgr A* 的横截面以及围绕它旋转的物质盘。中心的黑色球体代表了所谓的黑洞事件视界,也就是不归点,任何东西,甚至光都无法从这里逃逸。如图所示,从侧面观察旋转的黑洞,周围的时空形状就像一个足球。旋转速度越快,足球就越扁平。两侧的黄橙色物质代表围绕 Sgr A* 旋转的气体。这些物质不可避免地会坠向黑洞,一旦落入足球形状内部,就会穿过事件视界。因此,足球形状内、事件视界外的区域被描绘成一个空腔。蓝色圆球表示从旋转黑洞两极喷射而出的喷流。从顶部沿着喷流的枪管俯视黑洞,时空是一个圆形。人马座 A* 及其周围区域的钱德拉 X 射线图像。资料来源:NASA/CXC/威斯康星大学/Y.Bai, et al.黑洞的自旋可以作为一种重要的能量来源。旋转的超大质量黑洞在提取自旋能量时会产生诸如喷流之类的准直外流,这就要求黑洞附近至少有一些物质。由于 Sgr A* 周围的燃料有限,这个黑洞近千年来一直相对安静,喷流也相对较弱。然而,这项研究表明,如果Sgr A*附近的物质数量增加,这种情况可能会改变。为了确定Sgr A*的自旋,作者使用了一种被称为"外流法"的基于经验的技术,该技术详细说明了黑洞的自旋与其质量、黑洞附近物质的特性以及外流特性之间的关系。准直外流产生无线电波,而黑洞周围的气体盘则产生 X 射线辐射。利用这种方法,研究人员将钱德拉和 VLA 的数据与其他望远镜对黑洞质量的独立估计结合起来,对黑洞的自旋进行了约束。描述这些结果的论文由 Ruth Daly(宾夕法尼亚州立大学)领导,发表在 2024 年 1 月出版的《英国皇家天文学会月刊》上。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人