器官的建筑师:塑造我们发育的神奇细胞

器官的建筑师:塑造我们发育的神奇细胞 牙齿上皮(细胞表面;黄色)和间质(细胞表面;品红色)。增殖细胞(青色)扩大组织,在组织中心产生机械压力,推动主要牙齿信号中心或组织器珐琅质结的形成。资料来源:尼哈-品查-什罗夫和徐鹏飞幸运的是,就像城市中的手机信号塔一样,胚胎中特定位置的特殊细胞(称为组织者)会向其他细胞发送信号,帮助它们组织起来,构建我们复杂的器官。其中一些信号是从组织器这个特权信号中心发出的分子。组织器周围的细胞会根据自己的位置接收到或强或弱的信号,并做出相应的决定。这些信号中心在组织中的位置错误会导致胚胎畸形,甚至致命。科学家们很早就知道这些信号传导中心的重要性,但它们是如何出现在特定位置上的,却一直不得而知。物理学家和生物学家通过国际合作才找到了答案。几年前,Cedars-Sinai Guerin 儿童医院和加州大学旧金山分校(UCSF)的奥菲尔-克莱因(Ophir Klein)教授实验室,以及德累斯顿工业大学生命物理学卓越集群和加州大学圣巴巴拉分校(UCSB)的奥特格-坎帕斯(Otger Campàs)教授实验室预感到了它可能的工作原理,于是联手合作。他们共同发现,是生长组织内部的机械压力决定了信号中心将出现在哪里。研究工作表明,机械压力和分子信号传导在器官发育过程中都发挥着作用,Cedars-Sinai Guerin 儿童医院执行主任、本研究的共同通讯作者、医学博士 Ophir Klein 说,"他还是该院的 David and Meredith Kaplan 儿童健康杰出讲座教授。"组织细胞的机械压力这项发表在《自然-细胞生物学》(Nature Cell Biology)上的研究表明,当细胞在胚胎门牙中生长时,它们会感受到生长压力,并利用这一信息来组织自己。加州大学旧金山分校牙科学院博士后学者、该研究的共同第一作者尼哈-平查-什罗夫博士说:"这就像那些吸水变大的玩具。想象一下,在一个密闭的空间里会发生什么。在门牙结中发生的情况是,细胞在一个固定的空间中大量繁殖,这导致中心压力积聚,然后变成一个特化细胞群。就像拥挤的酒吧里的人一样,组织中的细胞开始感受到来自同伴的挤压。研究人员发现,感受到较强压力的细胞会停止生长,并开始发出信号,将牙齿周围的其他细胞组织起来。它们真的被挤压成了牙齿的组织者。"该研究的共同通讯作者、现任德累斯顿工业大学生命物理学卓越集群常务董事、教授兼组织动力学主席、加州大学伯克利分校机械工程系前副教授奥特格-坎帕斯博士说:"我们能够利用实验室以前开发的微滴技术,弄清机械压力的积累如何影响器官的形成。组织压力在建立信号传导中心方面的作用确实令人兴奋。看看机械压力是否或如何影响其他重要的发育过程将是一件有趣的事情。"胚胎在形成组织和器官的过程中,会利用这些信号中心来引导细胞。就像建造摩天大楼或桥梁一样,雕刻我们的器官需要严密的计划、大量的协调和正确的结构力学。在建造桥梁的过程中,任何一个环节出现问题都可能是灾难性的,而在子宫内生长时,也可能对我们造成损害。奥菲尔-克莱因说:"通过了解胚胎是如何形成器官的,我们可以开始询问先天性畸形儿出了什么问题。这项工作可能会促使我们对先天缺陷是如何形成的以及如何预防进行更多的研究。"编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

【书名】细胞:地球生命的建筑师

【书名】细胞:地球生命的建筑师 【作者】阿方索·马丁内斯·阿里亚斯 【格式】#epub #mobi #azw3 #pdf 【分类】#生物学 #科普 【简介】这本书引人入胜,雄心勃勃,将改变你对我们的过去、现在和未来的理解。将你我塑造成不同人类个体的并不是独特的DNA,而是细胞独特的自组织与活动方式。 下载 频道 群组 商务

封面图片

研究人员在实验室中培育出了与真实睾丸非常相似的器官组织

研究人员在实验室中培育出了与真实睾丸非常相似的器官组织 器官组织是实验室培育的三维微型器官,主要来源于干细胞,它开辟了模拟器官模型的新途径,包括研究疾病状态和测试治疗药物。在过去十年中,我们已经看到了微型大脑、心脏、肺、胃和结肠,它们的复杂性和功能都在不断提高。不过,目前还没有模拟睾丸的类器官。以色列巴伊兰大学(Bar-Ilan University)的研究人员改变了这一现状,他们从新生小鼠细胞中培育出了睾丸(这是单个睾丸的意思)器官组织,并生成了与真实睾丸相似的结构。该研究的通讯作者尼赞-戈宁(Nitzan Gonen)说:"人工睾丸是一种很有前景的睾丸发育和功能基础研究模型,它可以转化为治疗性发育障碍和不育症的应用。"睾丸发育功能障碍可导致性发育障碍(DSDs),如今通常被称为双性人,这是一组涉及基因、激素和生殖器官(包括生殖器)的罕见疾病。发育障碍还可能导致男性不育,而人们对其背后的遗传和环境机制知之甚少。研究人员从新生小鼠睾丸而非胚胎睾丸入手。与新生睾丸相比,胚胎睾丸的可用睾丸细胞更少。研究中使用的小鼠经过基因工程改造,研究人员可以跟踪 Sertoli 细胞的存在和状态,Sertoli 细胞对睾丸的形成、精子的产生和发育(精子形成)至关重要。研究人员从四至七天大的小鼠身上采集了整个睾丸;将未成熟的睾丸细胞离解成单细胞,并在含有睾丸中正常存在的因子的培养基上重新组合。研究人员使用3D培养系统来支持更好的睾丸类器官形成和维护。到了第二天,细胞已经形成了清晰的器官样组织,并在九周的时间里继续增大,直至崩溃。睾丸由两个主要部分组成:睾丸索(后来成为产生精子的曲细精管)和间质区(曲细精管的机械支撑区和睾酮产生区)。两者都含有特定类型的细胞。21天后,器官组织包含了所有主要的睾丸细胞类型,包括Sertoli细胞,其组织方式与真正的睾丸非常相似。Sertoli细胞形成了许多类似于精曲小管的管状结构。胚胎细胞培育出的有机体图像,显示第 14 天时管状结构的形成尽管使用从新生小鼠身上采集的新生细胞制造睾丸器官组织相对方便,但研究人员还是尝试使用胚胎细胞,因为胚胎细胞需要从怀孕的雌性小鼠身上采集。他们的想法是这样的:新生儿细胞的用途有限,因为许多与睾丸发育和功能障碍有关的疾病都发生在胚胎阶段。利用同样的技术,他们成功地从胚胎小鼠细胞中培育出了睾丸器官组织,其管状结构比新生儿细胞培育的器官组织更加清晰。当研究人员尝试使用成年睾丸细胞时,却无法形成类器官。虽然睾丸器官组织未能产生精子,但有迹象表明这是有可能的。精子形成是一个漫长的过程,精子干细胞经过减数分裂(细胞分裂)形成精母细胞,再发育成成熟的精子。研究人员发现,器官组织中减数分裂标记的低水平表达似乎与时间有关,主要是在第21天到42天之间,这可能表明在器官组织培养的后期阶段存在少量完全成熟的精子。器官组织与真实的睾丸非常相似,这意味着它们可以用来促进我们对性别决定机制的了解,并为男性不育症提供解决方案。今后,研究人员计划利用人体样本生产类器官。例如,用人体细胞制造的睾丸类器官可以帮助正在接受癌症治疗的儿童,因为癌症会损害他们产生功能性精子的能力。他们设想收获未成熟的精子细胞,然后将其冷冻起来,用于制造可育精子的类器官。这项研究发表在《国际生物科学杂志》上。 ... PC版: 手机版:

封面图片

我们的大脑如何工作?连接实验室培育的脑细胞产生新见解

我们的大脑如何工作?连接实验室培育的脑细胞产生新见解 东京大学工业科学研究所的研究人员发现,为实验室培育的"大脑器官"提供与真实大脑类似的连接,可以促进其发育和活动。资料来源:东京大学工业科学研究所神经研究的进展研究大脑发育和功能的确切机制具有挑战性。动物研究受到物种间大脑结构和功能差异的限制,而实验室培育的脑细胞往往缺乏人脑细胞特有的连接。更重要的是,研究人员越来越意识到,这些区域间的连接及其形成的回路,对于我们人类的许多大脑功能非常重要。以前的研究曾试图在实验室条件下创建大脑回路,这推动了这一领域的发展。东京大学的研究人员最近找到了一种方法,可以在实验室培育的"神经器官"(一种实验模型组织,将人类干细胞培育成模仿大脑发育的三维结构)之间建立更多生理连接。研究小组通过轴突束将有机体连接起来,这与活体人脑中各区域的连接方式类似。通过创新增进理解该研究的共同第一作者杜恩基(Tomoya Duenki)说:"在实验室条件下生长的单神经器官中,细胞开始显示出相对简单的电活动。当我们用轴索束连接两个神经器官组织时,我们能够看到这些双向连接是如何促进器官组织之间活动模式的产生和同步的,这与大脑内两个区域之间的连接有一定的相似性。"与轴索束相连的大脑器官组织比单个器官组织或使用以前的技术相连的器官组织显示出更复杂的活动。此外,当研究小组使用一种被称为光遗传学的技术刺激轴索束时,类器官的活动也会发生相应的变化,类器官会在一段时间内受到这些变化的影响,这一过程被称为可塑性。研究的资深作者 Yoshiho Ikeuchi 解释说:"这些发现表明,轴索束连接对于复杂网络的发展非常重要。"值得注意的是,复杂的大脑网络负责许多深层次的功能,如语言、注意力和情感。"鉴于大脑网络的改变与各种神经和精神疾病有关,因此更好地了解大脑网络非常重要。对实验室培养的人类神经回路进行研究,将有助于我们更好地了解这些网络在不同情况下是如何形成并随时间发生变化的,从而改进治疗这些疾病的方法。编译自:ScitechDaily ... PC版: 手机版:

封面图片

复旦团队成功将冷冻18个月的人脑组织复活

复旦团队成功将冷冻18个月的人脑组织复活 复旦大学研究团队成功将冷冻18个月的人脑组织复活,创下低温冷冻领域的新纪录,成果已经正式刊登在Cell子刊。 综合微信公众号“新智元”和《星岛日报》报道,研究由复旦大学邵志成博士领衔的团队进行。研究人员利用人类胚胎干细胞,花费三周培育出大脑类器官,而这些自组织脑细胞的小簇可以发育成各种类型的脑细胞。 研究人员随后将这些类器官浸入不同的化合物中,冷冻至少48小时再解冻,监测其生长和细胞死亡情况。 据报道,最终,研究团队发现由甲基纤维素、乙二醇、DMSO和Y27632组成的化学混合物效果最为理想,可以让组织解冻后死亡的细胞最少、生长得更多,将其命名为MEDY。 在MEDY中解冻的大脑类器官,在外观、生长、功能上都与从未冷冻过的同龄类器官非常相似,即便冷冻18个月依然如此,而且可以继续生长,最长超过了150天。 这个新的冷冻技术可以允许大脑类器官和样本保存更长时间以用于生物医学研究,最终或可以应用于整个大脑和其他组织。 2024年5月21日 9:09 PM

封面图片

生命的收缩:新发现重塑我们对胚胎形成的认识

生命的收缩:新发现重塑我们对胚胎形成的认识 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 处于囊胚期准备植入的人类胚胎。细胞核包膜显示为蓝色,肌动蛋白细胞骨架显示为橙色。图片来源:Julie Firmin 和 Jean-Léon Maître居里研究所(CNRS/Inserm/Institut Curie)遗传学和发育生物学小组的科学家们领导的一个跨学科研究小组在研究这一鲜为人知的现象的作用机制时发现了一个惊人的发现:人类胚胎的压实是由胚胎细胞的收缩驱动的。因此,压实问题是由于这些细胞的收缩能力有问题造成的,而不是像以前假设的那样是由于它们之间缺乏粘合力造成的。这一机制已在苍蝇、斑马鱼和小鼠身上发现,但在人类身上尚属首次。处于 4 细胞阶段的人类胚胎。细胞 DNA 显示为红色,肌动蛋白细胞骨架显示为蓝色。右侧的细胞刚刚将其基因组一分为二,即将分裂。资料来源:Julie Firmin et Jean-Léon Maître由于目前有近三分之一的人工授精不成功,研究小组希望通过提高我们对人类胚胎早期发育阶段的认识,为完善人工授精技术做出贡献。这些结果是通过绘制人类胚胎细胞的细胞表面张力图获得的。科学家们还测试了抑制收缩力和细胞粘附力的效果,并分析了收缩力有缺陷的胚胎细胞的机械特征。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

Nature: 用确定的化学混合物诱导小鼠全能干细胞

Nature: 用确定的化学混合物诱导小鼠全能干细胞 注:该文章尚未经过编辑 摘要:在小鼠中,只有来自2细胞胚胎的子宫和胚泡是真正的全能干细胞(TotiSCs),能够产生胚胎和胚胎外组织的所有分化细胞,并形成整个生物体。然而,在没有生殖细胞的情况下,是否以及如何在体外建立代表生命之初的TotiSCs,仍然是一个挑战。在此,我们展示了通过三种小分子,即TTNPB、1-Azakenpaullone和WS6的组合,从小鼠多能干细胞(PSCs)中诱导并长期维持ToniSCs。这些细胞,我们命名为ciTotiSCs(化学诱导的全能干细胞),在转录组、表观基因组和代谢组水平上与小鼠全能2C胚胎期细胞相似。此外,ciTotiSCs表现出双向发育的潜力,能够在体外和畸胎瘤中产生胚胎和胚外细胞。此外,在注射到8细胞的胚胎后,ciTotiSCs对胚胎和胚胎外系都有很高的贡献。我们对TotiSCs的诱导和维持的化学方法提供了一个明确的体外系统,以操纵和了解全能状态,从非种系创造生命。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人