科学家解开酒精消费的基因密码

科学家解开酒精消费的基因密码 这项研究最近发表在《柳叶刀电子生物医学》(Lancet eBioMedicine)杂志上。该研究的通讯作者、加州大学圣地亚哥分校医学院精神病学系副教授桑德拉-桑切斯-罗伊奇(Sandra Sanchez-Roige)博士解释说,该研究利用基因数据将个体大致分为欧洲人、拉丁美洲人和非洲裔美国人。共同作者、精神病学系教授兼基础研究副主任亚伯拉罕-A-帕尔默(Abraham A. Palmer)博士指出,这种分类"是避免统计遗传学中一种叫做人口分层的陷阱所必需的"。研究人员分析了来自 300 万 23andMe 研究参与者的遗传数据,重点研究了被称为单核苷酸多态性或 SNP 的三个特定 DNA 小片段。桑切斯-罗伊奇(Sanchez-Roige)解释说,这些特定 SNP 的变体或等位基因对从过度饮酒到酒精使用障碍等各种酒精行为具有"保护"作用。加州大学圣地亚哥分校的合作者讨论了他们对 300 万个 23andMe 数据库的研究。该小组成员包括(从左顺时针方向)Abraham A. Palmer、Laura Vilar-Ribo、Renata B. Cupertino、Sandra Sanchez-Roige、Natasia Courchesne-Krak 和 Mariela V Jennings。资料来源:加州大学圣地亚哥分校健康科学部他们所考虑的其中一种酒精保护变体非常罕见:在研究中发现的三种等位基因中,最常见的变体出现在 2,619,939 名欧洲人队列中的 232 人、446,646 名拉丁美洲人队列中的 29 人和 146,776 名非洲裔美国人队列中的 7 人身上;其他变体则更为常见。这些变异会影响人体代谢乙醇酒精饮料中的致醉化学物质的方式。"SNP小等位基因变异的人能将乙醇迅速转化为乙醛。"桑切斯-罗伊奇说:"这会造成很多负面影响。她接着说,由此产生的恶心感会让酒精带来的任何愉悦感都黯然失色想想几乎马上就会出现的严重宿醉吧。"她说:"这些变体主要与一个人的饮酒量有关。它们还倾向于预防酒精使用障碍,因为这些变体主要与一个人可能饮酒的数量有关。"桑切斯-罗伊奇解释说,SNP变异对酒精消费的影响已经得到了很好的研究,但她的研究小组对23andMe数据集采取了一种"无假设"的方法,该数据集包含了数千种特征和行为的调查数据。研究人员希望找出这三个 SNP 变异是否会对酒精消费产生其他影响。桑切斯-罗伊奇和帕尔默指出,他们的研究小组与23andMe建立了长达10年的合作关系,重点研究了许多性状,尤其是与成瘾有关的性状。这项工作是通过 23andMe 研究计划开展学术合作的基础。他们对 23andMe 研究参与者同意提交的唾液样本中的 DNA 进行了数据挖掘分析,并对 23andMe 数据库中的健康和行为调查进行了回复,结果发现了一系列关联,但不一定与酒精有关。具有酒精保护等位基因的个体健康状况普遍较好,包括慢性疲劳较少,日常工作中需要的协助也较少。但论文指出,具有酒精保护等位基因的个体在某些方面的健康状况也较差:终生使用烟草较多、情绪化饮食较多、患巴塞杜氏病和甲状腺机能亢进症较多。具有酒精保护等位基因的个体还报告了完全出乎意料的差异,如更多的疟疾、更多的近视和几种癌症,尤其是更多的皮肤癌和肺癌,以及更多的先兆偏头痛。桑切斯-罗伊奇承认,他们的研究结果有一个先有鸡还是先有蛋的问题。举例来说: 心血管疾病只是已知与饮酒有关的一系列疾病中的一种。"那么,饮酒是否会导致这些疾病呢?"帕尔默补充道:"还是说,这些基因差异对疟疾和皮肤癌等疾病的影响与饮酒无关?"桑切斯-罗伊奇(Sanchez-Roige)说,只有当研究人员能够获得非常庞大的数据集时,才有可能进行这种广泛的、无假设的研究。许多数据集,包括研究中使用的数据集,在很大程度上依赖于具有欧洲血统的个体。她说:"在遗传研究中纳入不同祖先背景的个体非常重要,因为这样可以更全面地了解酗酒行为和其他疾病的遗传基础,所有这些都有助于更全面、更准确地了解人类健康。只对一组基因相似的个体(例如,具有共同欧洲血统的个体)进行研究,可能会加剧健康差异,因为这将有助于那些仅对该人群有利的发现。"她说,他们的研究为未来的研究打开了许多大门,追寻酒精保护等位基因和与饮酒无明显关系的疾病之间可能存在的联系。了解这些影响的潜在机制可能会对治疗和预防医学产生影响。编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

科学家为阿拉伯豹制定基因拯救计划

科学家为阿拉伯豹制定基因拯救计划 由肯特大学杜瑞尔保护与生态研究所 (DICE) 、东英吉利大学 (UEA)、伦敦大学学院 (UCL)、诺丁汉特伦特大学 (NTU) 和阿曼皇家宫廷酋长院 (Diwan of Royal Court) 的科学家领导的一项国际合作调查了阿曼南部偏远的佐法尔山脉,以确定阿拉伯最后一种大型猫科动物的存活数量。通过部署照相机陷阱来识别豹子个体,并对野生豹子的粪便和圈养种群的样本进行DNA分析,研究小组估计阿曼可能只剩下 51 只野生豹,分布在三个孤立的、基因贫乏但截然不同的亚种群之间。尽管发现阿曼野生花豹种群的遗传多样性水平极低,但研究小组在整个地区的人工饲养花豹中发现了较高水平的遗传多样性,特别是在来自邻国也门的几个个体中,这些个体帮助建立了今天的人工饲养种群,这一重要的遗传资源有可能为阿拉伯豹的成功恢复发挥重要作用。研究小组的研究表明,通过"基因拯救",即把圈养豹的后代引入野生种群,可以最有效地恢复该地区日益减少的野生种群数量。然而,他们的预测表明,要想通过基因拯救重新引入豹子来建立最有生命力的种群,就必须仔细评估新基因所能带来的益处,特别是因为圈养的豹子可能已经是近亲繁殖。这项发表在《进化应用》(Evolutionary Applications)上的研究利用 DICE 的保护基因分析、UEA 开发的尖端计算机模拟以及在阿曼进行的大量实地考察,对阿拉伯豹的 DNA 进行了仔细检查,评估了其未来灭绝的风险,并预测了如何通过基因拯救来确保阿拉伯豹的生存能力。作者说,他们的研究成果可以帮助其他濒危物种。吉姆-格鲁姆布里奇(Jim Groombridge)教授在肯特郡的 DICE 领导了这项研究,他解释了基因分析是如何进行的:"我们与阿曼皇家宫廷的迪旺合作,调查并收集了佐法尔山脉各地的豹粪,从中提取了DNA,并使用微卫星DNA标记进行分析,以量化遗传多样性。""利用基因信息,我们能够确定野生豹的个体数量。然后,我们就可以比较野生豹群体和人工饲养豹群体之间的遗传多样性水平。"沙特阿拉伯皇家乌拉委员会阿拉伯豹保护负责人哈迪-希克马尼博士(Dr Hadi Al Hikmani)描述了这项研究的动机。阿拉伯豹是世界上最稀有的食肉动物之一,非常难以捉摸。在野外监测这些豹子的唯一方法就是在豹子生活的山脉高处部署相机陷阱,并收集它们在山口留下的粪便进行 DNA 分析。托马斯-伯利(Thomas Birley)是东南欧大学的一名博士研究员,他进行了基因拯救的计算机模拟,他说:"通过使用野生和圈养种群的基因信息,我们能够预测基因拯救的最佳方案,以确保这种极度濒危大型猫科动物的长期生存能力。"英国能源大学环境科学学院的科克-范-奥斯特豪特教授补充说:"问题在于,所有个体之间都有某种联系。他们是在人口大崩溃中幸存下来的少数祖先的后代。因此,要阻止近亲繁殖几乎是不可能的,这会暴露出'坏的'突变,也就是我们所说的基因负荷。反过来,这会增加死亡率,导致种群进一步崩溃。"'基因负荷构成了严重威胁,但可以通过基因拯救来缓解,我们的研究预测了实现这一目标的最佳途径。野生种群需要'基因拯救',需要人工饲养的基因更加多样化的豹子。这些豹子的基因更加多样化,有助于降低近亲繁殖和基因负荷水平。不过,我们也有可能将圈养种群中的其他不良变异引入野生种群,因此我们需要谨慎平衡。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科学家实现以RNA为媒介的基因精准写入

中国科学家实现以RNA为媒介的基因精准写入 以CRISPR基因编辑技术为代表的技术进步实现了基因组单碱基和短序列尺度的精准编辑,基本解决了基因组精准编辑的挑战。然而,如何针对应用场景的需求,实现大片段DNA在基因组的高效精准整合,仍然是整个基因工程领域亟需突破的难题。该技术的突破意味着可以通过外源功能基因的精准写入,来干预多种不同位点基因突变导致的单基因遗传缺陷等疾病,从而开发更为通用的基因与细胞疗法,具有广泛的应用前景。针对这一重大技术挑战,多种基因写入技术已被开发,如CRISPR核酸酶介导的同源重组或非同源末端连接技术等,但是这些技术都依赖于DNA模板作为基因写入的供体(donor)。在实际医学应用中,DNA供体面临免疫原性高、在体(in vivo)递送困难、在基因组中具有随机整合风险等诸多挑战。相比之下,RNA供体具有免疫原性低、可被非病毒载体(例如LNP)有效递送、在细胞内迅速降解,无随机整合风险等特点,能有效应对DNA供体所面临的挑战。因此,以RNA为供体的大片段精准写入技术,在安全性、可递送性方面都具有显著的优势。然而,现有以RNA为供体的技术,要么无法实现>200 bp的DNA片段高效整合(如引导编辑等),要么依靠基因组随机整合从而带来基因组随机突变风险(如逆转录病毒等)。是否能够以RNA作为供体,实现功能基因尺度的大片段DNA基因组精准定点整合?仍然是基因工程领域面临的挑战。2024年7月8日,Cell杂志以长文形式在线发表了中国科学院动物研究所/北京干细胞与再生医学研究院李伟研究员与周琪研究员团队合作完成的题为All-RNA-mediated Targeted Gene Integration in Mammalian Cells with Rationally Engineered R2 Retrotransposons的研究论文。该研究结合基因组数据挖掘和大分子工程改造等手段,开发了使用RNA供体进行大片段基因精准写入的R2逆转座子工具,能够在多种哺乳动物细胞系、原代细胞中实现大片段基因(>1.5 kb)高效精准的整合,最高效率超过60%,成功实现了全RNA介导的功能基因(DNA)在多种哺乳动物基因组的精准写入,为新一代创新基因疗法的发展提供了基础。作为基因组进化的源动力之一,转座子可以通过在不同基因组间的"跳跃",实现自我的复制与扩增。其中,以RNA作为媒介的R2逆转座子的"跳跃"机制与以RNA作为供体的基因写入工具的开发思路不谋而合。同时,该类逆转座子天然倾向于整合在真核生物固定的28S rDNA基因组位点,这一位点在人基因组中拷贝数目多(约219个),且远离蛋白编码基因,是适合于外源基因整合的安全港位点("safe harbor"loci)。因此,R2逆转座子是以RNA为供体的大片段基因写入工具开发的有力的候选者。然而,尽管R2逆转座子早在上世纪80年代就被发现,其在哺乳动物细胞中的功能性质尚未被系统性地探索,迄今为止,未能被利用来在哺乳动物细胞中实现大片段功能基因的有效整合。在本研究中,研究团队首先通过数据挖掘,全面系统地分析了自然界中R2逆转座子元件的生物多样性;通过构建基于RNA供体的基因写入的报告体系,成功筛选出在哺乳动物细胞中具有完整GFP功能基因整合活性的R2Tg系统(来源于一种鸟Taeniopygia guttata 的基因组)。随后,研究团队针对R2Tg系统发挥功能所必需的两个关键组分:R2蛋白质以及供体RNA,进行了系统性的功能探索与工程化改造,最终获得了在人细胞系中基因整合效率超过20%的en-R2Tg工具。系统的工程化改造获得en-R2Tg工具由于R2蛋白质可以通过mRNA表达,且供体RNA本身也是RNA,那么,en-R2Tg工具能否以全RNA形式介导的基因的高效精准写入?为了探究这一点,研究人员通过体外合成获得了编码R2蛋白质mRNA以及供体RNA,并使用脂质体递送的方式将两条mRNA导入人的细胞中。结果显示,en-R2Tg工具能够高效整合多个与疾病治疗相关基因,且这些基因能够有效表达功能蛋白。能够以全RNA的形式发挥功能,意味着en-R2Tg工具可以使用安全性已经在临床上得到证明的LNP纳米材料来进行递送,这将有可能解决长久以来基因写入工具依赖病毒载体进行高效递送的难题。研究团队发现,使用LNP递送en-R2Tg工具在人的肝脏细胞系中能够实现25%的基因整合效率。此外,研究团队还证明R2工具在人类原代细胞中同样具有活性;同时,通过显微注射将en-R2Tg工具导入小鼠胚胎,成功实现了超过60%的GFP基因定点整合效率。本研究的另一关键点在于,工程化改造的en-R2Tg工具是否还保留有天然R2逆转座子的28S rDNA位点特异性整合这一性质?为了回答这一问题,研究人员结合无偏好的基因整合富集高通量测序以及全基因组三代测序方法,发现en-R2Tg工具在全基因组范围内展现了极高的基因整合特异性,大于99%的外源基因都精准整合到28S rDNA安全港位点。同时,结合qRT-PCR以及RNA-Seq实验,研究人员发现en-R2Tg工具对细胞的转录组状态几乎没有影响。这说明 en-R2Tg 介导的基因写入是位点精准特异的,可以有效避免逆转录病毒等技术所产生的基因随机整合导致的基因突变风险。综上,该研究基于自然界存在的R2逆转座系统,结合数据分析和工程化改造方法,成功开发了全RNA介导的、高效精准的基因写入技术,首次在多种人和小鼠细胞系及原代细胞中实现了功能基因的定点整合。R2基因精准写入工具在递送和安全性方面具有显著优势,未来有望基于此工具开发在体功能基因回补写入以及在体生成CAR-T细胞等全新的疾病治疗方法。值得注意的是,R2基因写入技术目前无法实现在不同基因组位点的可编程写入,且在人原代细胞中的基因写入效率较低,因此未来需要进一步发展和优化。开发全RNA介导的、高效精准的哺乳动物细胞大片段功能基因写入工具该研究由中国科学院动物研究所与北京干细胞与再生医学研究院合作完成,中国科学院动物研究所博士后陈阳灿、博士生骆胜球、博士后胡艳萍、博士生毛邦炜、王鑫阁与卢宗宝为本研究共同第一作者,中国科学院动物研究所李伟研究员与周琪研究员为共同通讯作者。该研究工作得到科学技术部、国家自然科学基金委员会、中国科学院、北京市自然科学基金等的大力支持。 ... PC版: 手机版:

封面图片

科学家揭示对基因组健康至关重要的145个基因

科学家揭示对基因组健康至关重要的145个基因 2月14日,《自然》杂志发表了一项新研究,通过对近千个转基因小鼠品系进行系统筛选,发现了一百多个与DNA损伤有关的关键基因。这项工作为癌症进展和神经退行性疾病提供了见解,也为蛋白质抑制剂提供了潜在的治疗途径。基因组包含生物细胞内的所有基因和遗传物质。当基因组稳定时,细胞就能准确地复制和分裂,将正确的遗传信息传递给下一代细胞。尽管基因组非常重要,但人们对影响基因组稳定性、保护、修复和防止 DNA 损伤的遗传因素知之甚少。突破性研究及其影响在这项新研究中,威康-桑格研究所的研究人员与剑桥大学英国痴呆症研究所的合作者一起,着手更好地了解细胞健康的生物学特性,并找出维持基因组稳定性的关键基因。研究小组利用一组转基因小鼠品系,确定了 145 个在增加或减少异常微核结构的形成中起关键作用的基因。这些结构表明基因组不稳定和 DNA 损伤,是衰老和疾病的常见标志。当研究人员敲除DSCC1基因时,基因组不稳定性的增加最为显著,异常微核的形成增加了五倍。缺乏该基因的小鼠具有与人类凝聚素病症患者相似的特征,这进一步强调了这项研究与人类健康的相关性。通过 CRISPR 筛选,研究人员发现DSCC1缺失引发的这种效应可以通过抑制蛋白质 SIRT1 得到部分逆转。这些发现有助于揭示影响人类基因组一生健康和疾病发展的遗传因素。该研究的资深作者、剑桥大学英国痴呆症研究所的加布里埃尔-巴尔穆斯(Gabriel Balmus)教授说:"继续探索基因组不稳定性对于开发针对遗传根源的定制治疗方法至关重要,其目标是改善各种疾病的治疗效果和患者的整体生活质量。我们的研究强调了SIRT抑制剂作为治疗粘连蛋白病和其他基因组疾病途径的潜力。它表明,早期干预,特别是针对 SIRT1 的干预,有助于在基因组不稳定性发展之前减轻与之相关的生物变化。"这项研究的第一作者、威康桑格研究所的大卫-亚当斯(David Adams)博士说:"基因组稳定性是细胞健康的核心,影响着从癌症到神经变性等一系列疾病,但这一直是一个探索相对不足的研究领域。这项工作历时15年,体现了从大规模、无偏见的基因筛选中可以学到什么。所发现的 145 个基因,尤其是那些与人类疾病相关的基因,为开发治疗癌症和神经发育障碍等基因组不稳定疾病的新疗法提供了有希望的靶点。"研究要点:对基因组造成损害的各种来源包括辐射、化学接触以及 DNA 复制或修复过程中的错误。微核是一种小的异常结构,通常被称为"突变工厂",其中含有错位的遗传物质,而这些物质本应在细胞核中。它们的存在意味着患癌症和发育障碍等疾病的风险增加。凝聚蛋白病是一组因凝聚蛋白功能障碍而导致的遗传病,凝聚蛋白对细胞分裂过程中染色体的正常组织和分离至关重要。这可能导致一系列发育异常、智力障碍、独特的面部特征和生长迟缓。当 SIRT1 蛋白被抑制时,DNA 损伤就会减少,它们就能挽救与内聚力破坏相关的DSCC1缺失所带来的负面影响。这种作用是通过恢复一种名为 SMC3 的蛋白质的化学水平实现的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

《基因危机:天才科学家的五日 2014 》 | 简介:基因危机:天才科学家的五日 2014围绕天才科学家在五天内所面临的基因技术

《基因危机:天才科学家的五日 2014 》 | 简介:基因危机:天才科学家的五日 2014围绕天才科学家在五天内所面临的基因技术引发的危机展开,剧情紧张刺激,探讨基因科技对人类社会带来的巨大冲击,呈现科学、伦理与人性之间的复杂博弈 。|文件大小 NG| 链接:|标签: 基因危机 2014 #基因科幻 #伦理探讨 #危机解谜

封面图片

科学家成功解码“材料基因组”

科学家成功解码“材料基因组” 来自原子探针的模拟二维原子图像。图片来源:悉尼大学这一突破对于开发创新材料至关重要,将推动人们开发用于航空航天业的更坚固且更轻的合金、用于电子设备的新一代半导体以及用于电动机的改进磁铁。该研究利用原子探针断层扫描(APT)技术来解开短程阶(SRO)的复杂性。SRO工艺是了解局部原子环境的关键。SRO经常被比作“材料基因组”,即晶体内原子的排列或构型。其重要性在于不同的局部原子排列会影响材料的电子、磁性、力学、光学和其他特性,这些特性对之后产品的安全性和功能性有极大影响。此次研究的重点是钴-铬-镍高熵合金,这类合金在高级工程应用中非常有前途。团队利用复杂的APT成像数据,并结合先进的数据科学技术,实现了以3D形式可视化原子,从而观察和测量SRO,并比较在不同加工条件下合金的变化。该研究为SRO如何控制关键材料特性研究提供了模板,也为科学家提供了一双新“眼睛”,从而可以看到原子级架构的微小变化,是如何导致材料性能的巨大飞跃的。至关重要的是,SRO提供了详细的原子级蓝图,增强了人们对材料行为的计算模拟、建模和最终预测的能力。 ... PC版: 手机版:

封面图片

科学家关注蝙蝠群聚交换免疫基因带来病毒耐受性的进化的现象

科学家关注蝙蝠群聚交换免疫基因带来病毒耐受性的进化的现象 德克萨斯农工大学兽医与生物医学科学学院(VMBS)的 Nicole Foley 博士说:"了解蝙蝠是如何进化出病毒耐受力的,可能有助于我们了解人类如何才能更好地对抗新出现的疾病。作为基因组学家,我们的工作常常为直接研究病毒传播的科学家的研究奠定基础。他们可能正在开发疾病疫苗或监测易感动物种群。我们相互依赖,才能在下一次大流行中保持领先。"一只正在捕食的鼠耳蝠。图片来源:Nicole Foley 博士/德克萨斯农工大学兽医与生物医学学院由于蝙蝠通常对其携带的疾病具有免疫力,福里和兽医综合生物科学系教授比尔-墨菲博士认为,研究蝙蝠的疾病免疫力可能是预防下一次全球大流行的关键。福里说:"由于 COVID-19 大流行,预测和预防疫情爆发成为研究人员和公众的首要任务。有几种蝙蝠对危害人类健康的病毒有耐受性,这意味着它们会成为疾病的贮藏库它们携带病毒,但关键是它们不会出现症状"。长耳鼠耳蝠。图片来源:Nicole Foley 博士/德克萨斯农工大学兽医与生物医学科学学院为了准确揭示蝙蝠是如何进化出对这些致命病毒的耐受力,弗利、墨菲和他们的国际研究伙伴绘制了蝙蝠的进化树图,他们知道这对于试图确定哪些基因可能参与其中至关重要。"鼠耳蝠是哺乳动物中的第二大属,有 140 多个物种,"她说。"它们几乎遍布世界各地,并寄生着多种多样的病毒。鼠耳蝠和其他蝙蝠物种在交配期间也有成群行为,这给弄清物种间的关系增加了困难。"在一起栖息的长耳鼠耳蝠。图片来源:Nicole Foley 博士/德克萨斯农工大学兽医与生物医学学院Foley 说:"你可以把群体行为想象成社交聚会;这里有大量的飞行活动、更多的交流和物种间的交融,对蝙蝠来说,这和去夜总会没什么两样。"让研究人员感到复杂的是,蝙蝠群会产生更多的杂交种父母来自不同物种的个体蝙蝠。Foley 说:"鼠耳蝠的问题在于种类繁多,大约有 130 种,但它们看起来都非常相似。很难将它们彼此区分开来,而杂交则使区分变得更加困难。如果我们想弄清楚这些蝙蝠是如何进化的,从而了解它们的疾病免疫力,那么能够分辨出谁是谁就非常重要了。"长耳鼠耳蝠。图片来源:Nicole Foley 博士/德克萨斯农工大学兽医与生物医学科学学院有鉴于此,为了绘制出鼠耳蝠之间的真实关系图,弗利和墨菲首先解开了杂交的遗传密码,这样他们就能更清楚地分辨出哪些物种是鼠耳蝠。她解释说:"我们与爱尔兰、法国和瑞士的研究人员合作,对60种蝙蝠的基因组进行了测序。这使我们能够弄清DNA中哪些部分代表了物种的真实进化史,哪些部分是杂交产生的。"解决了这部分难题后,研究人员终于能够更仔细地研究遗传密码,看看它如何可能揭示疾病免疫。他们发现,免疫基因是蜂拥时物种间最频繁交换的一些基因。"对于研究人员来说,群聚行为一直是个谜,"Foley 说。"现在我们对这种特殊行为进化的原因有了更好的理解也许是为了促进杂交,这有助于在整个种群中更广泛地传播有益的免疫基因变体。"Nicole Foley 博士和 William Murphy 博士。资料来源:德克萨斯农工大学兽医和生物医学科学学院Foley 和 Murphy 的发现为我们提出了关于杂交在进化中的重要性的新问题。Foley指出:"杂交在我们的发现中所起的作用比我们预想的要大得多。这些结果让我们不禁要问,迄今为止,杂交在多大程度上掩盖了基因组学家对哺乳动物进化史的了解。现在,我们希望找出哺乳动物之间发生杂交的其他情况,看看我们能了解它们之间的关系,甚至基因组是如何以及为什么会以这种方式组织起来的。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人