巨型星系爆炸高分辨率地图揭示宇宙污染的动力学

巨型星系爆炸高分辨率地图揭示宇宙污染的动力学 NGC 4383星系正在奇异地演变。气体正以每秒超过 200 公里的速度从它的核心流出。这种神秘的气体喷发有一个独特的原因:恒星形成。资料来源:ESO/A.Watts et al.研究人员 Adam Watts 博士和 Barbara Catinella 教授讨论太空中的发现和气体污染问题。资料来源:ICRAR主要作者、西澳大利亚大学国际射电天文研究中心(ICRAR)的亚当-沃茨(Adam Watts)博士说,外流是银河系中心区域强大恒星爆炸的结果,可能会喷射出大量的氢和更重的元素。喷射出的气体质量相当于 5000 多万个太阳。瓦茨博士说:"由于外流很难被探测到,因此人们对外流的物理特性知之甚少。喷射出的气体中含有相当丰富的重元素,这为我们提供了一个独特的视角,观察流出气体中氢和金属之间复杂的混合过程。在这种特殊情况下,我们检测到了氧、氮、硫和许多其他化学元素"。气体外流对于调节星系形成恒星的速度和持续时间至关重要。这些爆炸喷出的气体会污染星系内恒星之间的空间,甚至星系之间的空间,并可能永远漂浮在星系间介质中。高分辨率地图是利用MAUVE 勘测的数据绘制的,ICRAR 的研究人员 Barbara Catinella 教授和 Luca Cortese 教授是这项研究的共同作者。这次观测使用了位于智利北部的欧洲南方天文台甚大望远镜上的MUSE积分场摄谱仪。安装在智利甚大望远镜(VLT)上的 MUSE 仪器。资料来源:A. Tudorica/ESOCatinella 教授说:"我们设计 MAUVE 的目的是研究气体外流等物理过程如何帮助阻止星系中恒星的形成。NGC 4383 是我们的第一个目标,因为我们怀疑有非常有趣的事情正在发生,但数据超出了我们的预期。我们希望,未来 MAUVE 的观测能以精致的细节揭示气体外流在局部宇宙中的重要性"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究人员在类星体宿主星系中发现了恒星形成受抑制的证据

研究人员在类星体宿主星系中发现了恒星形成受抑制的证据 类星体研究取得突破由北海道大学的德拉甘-萨拉克(Dragan Salak)助理教授、筑波大学的桥本拓也(Takuya Hashimoto)助理教授和早稻田大学的井上明夫(Akio Inoue)教授领导的研究小组首次发现了宇宙早期类星体宿主星系中的分子气体外流抑制恒星形成的证据。他们利用智利阿塔卡马大型毫米波/亚毫米波阵列(ALMA)进行的观测结果发表在《天体物理学报》上。从类星体 J2054-0005 喷出的分子气体的艺术印象。资料来源:ALMA (ESO/NAOJ/NRAO)分子气体在星系中的作用分子气体对恒星的形成至关重要。作为恒星形成的主要燃料,星系内无处不在的高浓度分子气体会导致大量恒星的形成。分子外流将这些气体喷射到星系际空间的速度快于恒星形成所消耗的速度,从而有效地抑制了类星体所在星系中恒星的形成。萨拉克解释说:"理论研究表明,分子气体外流从早期就在星系的形成和演化过程中发挥着重要作用,因为它们可以调节恒星的形成。类星体是能量特别高的来源,因此我们预计它们可能会产生强大的外流"。一组正在观测夜空的 ALMA 12 米天线。本研究使用 12 米天线进行观测。资料来源:ESO/Y.Beletsky发现分子气体外流研究人员观测到的类星体 J2054-0005 具有非常高的红移它和地球之间的移动速度显然非常快。桥本说:"J2054-0005 是遥远宇宙中最亮的类星体之一,因此我们决定把这个天体作为研究强大外流的绝佳候选天体。研究人员利用 ALMA 观测了类星体的分子气体外流。作为世界上唯一具有探测早期宇宙中分子气体外流的灵敏度和频率覆盖范围的望远镜,ALMA 是这项研究的关键。"谈到研究中使用的方法,Salak 评论道:"外流分子(OH)气体是通过吸收发现的。这意味着我们观测到的微波辐射并非直接来自OH分子;相反,我们观测到的辐射来自明亮的类星体吸收意味着OH分子恰好吸收了类星体的部分辐射。因此,这就像是通过看到气体在光源前投下的'影子'来揭示气体的存在"。类星体流出的分子气体包括羟基(OH)(上图)。由于分子气体向观测者方向运动,吸收光谱中的羟基峰(底部,蓝色虚线)出现在较短的波长上(蓝色实线),这种现象被称为多普勒效应。资料来源:ALMA(ESO/NAOJ/NRAO),修改自 Dragan Salak 等人,《天体物理学杂志》。2024 年 2 月 1 日对星系演化的影响这项研究的发现首次有力地证明了类星体宿主星系存在强大的分子气体外流,并对早期宇宙时代的星系演化产生影响。"分子气体是星系的重要组成部分,因为它是恒星形成的燃料,"Salak 总结道。"我们的研究结果表明,类星体能够通过将分子气体喷射到星系际空间来抑制其宿主星系中恒星的形成。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

从宇宙斑点到巨大星系:韦伯揭示早期宇宙的巨型星系Gz9p3

从宇宙斑点到巨大星系:韦伯揭示早期宇宙的巨型星系Gz9p3 然而,我们观测到的星系肯定不是稚嫩的,新的观测结果表明,在如此早期,星系的质量和成熟度都超过了以前的预期,这有助于改写我们对星系形成和演化的认识。我们的国际研究小组最近对已知最早的星系之一Gz9p3进行了前所未有的详细观测,观测结果发表在《自然-天文学》(Nature Astronomy)上。它的名字来源于格拉斯合作(我们国际研究团队的名称)和星系的红移z=9.3这一事实,红移是描述天体距离的一种方法,因此有了G和z9p3。Gz9p3,宇宙最初 5 亿年中已知最亮的合并星系(通过 JWST 观测) 左图:直接成像显示中央区域有一个双核核心。右图光剖面的等高线显示出星系合并产生的拉长的团块结构。资料来源:美国国家航空航天局就在几年前,Gz9p3 还只是哈勃太空望远镜中的一个光点。但通过詹姆斯-韦伯太空望远镜,我们可以观测到这个天体在宇宙大爆炸后 5.1 亿年,也就是大约 130 亿年前的样子。对于这样一个年轻的宇宙来说,Gz9p3 的质量和成熟度都远超预期,它已经包含了几十亿颗恒星。它是迄今为止确认的质量最大的天体,根据计算,它的质量是宇宙早期发现的其他星系的 10 倍。这些结果表明,银河系要达到这样的大小,恒星的发展速度和效率一定比我们最初想象的要快得多。早期宇宙中最遥远的星系合并这个 Gz9p3 不仅质量巨大,而且其复杂的形状一眼就能看出它是有史以来最早的星系合并之一。JWST 对这个星系的成像显示了两个相互作用星系的典型形态。合并还没有结束,因为我们仍然可以看到两个组成部分。当两个大质量天体像这样合并时,它们会在合并过程中有效地丢弃一些物质。因此,这些被丢弃的物质表明,我们观测到的是有史以来最遥远的一次合并。随后,研究人员将目光投向更深层次,以描述构成合并星系的恒星群。利用 JWST,我们能够检查星系的光谱,就像三棱镜把白光分成彩虹一样,我们也能把光分成不同的部分。如果仅使用成像技术,对这些非常遥远天体的大多数研究只能显示出非常年轻的恒星,因为年轻的恒星更亮,所以它们的光会主导成像数据。例如,由星系合并引发的一个不到几百万年历史的年轻明亮群体,比一个已经超过一亿年历史的古老群体更加耀眼。利用光谱技术,我们可以进行非常详细的观测,从而区分出这两个种群。早期宇宙的新模型考虑到恒星形成的时间较早,到这一宇宙时期已经足够老化,如此成熟的老恒星群是我们始料未及的。光谱非常细致,我们可以看到老恒星的细微特征,这些特征告诉我们,它们比你想象的要多得多。光谱中检测到的特定元素(包括硅、碳和铁)显示,这个较老的族群的存在一定是为了给星系提供丰富的化学物质。令人惊讶的不仅是星系的大小,还有它们成长到如此成熟的化学状态的速度。这些观测结果提供的证据表明,在宇宙大爆炸之后,恒星和金属迅速而有效地积累起来,并与正在进行的星系合并联系在一起,这表明拥有几十亿颗恒星的大质量星系比预期的更早存在。观测结果提供了证据,证明恒星和金属在宇宙大爆炸之后迅速、高效地积累起来。资料来源:NASA、ESA、Jennifer Lotz(STSCI)、Matt Mountain(STSCI)、Anton M. Koekemoer(STSCI)、HFF 小组(STSCI)孤立星系从其有限的气体库中就地积累恒星群,然而,这种增长方式对星系来说是缓慢的。星系之间的相互作用可以吸引新的原始气体流入,为恒星的快速形成提供燃料,而星系的合并则为质量的积累和增长提供了更快的通道。现代宇宙中最大的星系都有过合并的历史,包括我们的银河系,它是通过与较小星系的连续合并才发展到现在的大小的。对Gz9p3的这些观测结果表明,星系能够在早期宇宙中通过合并迅速积累质量,恒星形成效率比我们预期的要高。利用 JWST 进行的这一观测和其他观测正在促使天体物理学家调整他们对宇宙早期的建模。我们的宇宙学不一定是错的,但我们对星系形成速度的理解可能是错的,因为它们的质量比我们认为的可能还要大。在利用 JWST 进行科学观测的两年期即将到来之际,这些新成果可谓恰逢其时。随着观测到的星系总数不断增加,研究早期宇宙的天文学家们正从发现阶段过渡到我们拥有足够大的样本来开始建立和完善新模型的阶段。现在是了解早期宇宙奥秘的最激动人心的时刻。编译自:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程 这幅插图显示了一个在宇宙大爆炸后几亿年才形成的星系,在重离子时代,气体是透明和不透明的混合体。来自美国宇航局詹姆斯-韦伯太空望远镜的数据显示,这些早期星系附近存在大量冷的中性气体而且这些气体的密度可能比预想的要高。韦伯望远镜在2022年开始观测几个月后,作为其宇宙演化早期释放科学(CEERS)调查的一部分观测到了这些星系。CEERS包括图像和来自其NIRSpec(近红外摄谱仪)上微型遮光器的光谱数据。作为韦伯早期发布科学(ERS)计划的一部分,CEERS的数据被立即发布,以支持类似的发现。资料来源:NASA、ESA、CSA、Joseph Olmsted(STScI)这一发现是利用詹姆斯-韦伯太空望远镜(James Webb Space Telescope)完成的,该望远镜为我们地球上的人们带来了对形成中星系的首次"实时观测"。通过这架望远镜,研究人员能够看到大量气体发出的信号,这些气体在形成过程中不断积累并吸附到一个小型星系上。虽然根据理论和计算机模拟,星系就是这样形成的,但实际情况却从未出现过。"可以说,这是我们看到的第一张'直接'拍摄的星系形成图像。詹姆斯-韦伯之前向我们展示的是处于演化后期的早期星系,而在这里,我们见证了它们的诞生,从而也见证了宇宙中第一批恒星系统的构建。"尼尔斯-玻尔研究所的卡斯帕-埃尔姆-海因茨助理教授说,他领导了这项新研究。这项研究发表在备受推崇的科学杂志《科学》上。他们是如何做到的:研究人员利用复杂的模型,研究了来自这些星系的光线是如何被其内部和周围的中性气体吸收的,从而能够测量出宇宙第一批星系的形成过程。这种转变被称为莱曼-阿尔法转变。通过测量光线,研究人员能够将新形成的星系中的气体与其他气体区分开来。这些测量结果之所以能够实现,要归功于詹姆斯-韦伯太空望远镜极其灵敏的红外摄谱仪功能。大爆炸后不久诞生的星系研究人员估计,这三个星系的诞生大约发生在宇宙大爆炸之后的 4-6 亿年。虽然这听起来像是一个很长的时间,但它相当于在宇宙 138 亿年总寿命的前 3% 到 4% 的时间里形成的星系。宇宙大爆炸后不久,宇宙还是一团由氢原子组成的巨大不透明气体与今天不同的是,今天的夜空中布满了轮廓分明的恒星。"在宇宙大爆炸后的几亿年里,第一批恒星形成,之后恒星和气体开始凝聚成星系。"达拉赫-沃森(Darach Watson)副教授解释说:"这就是我们在观测中看到的开始过程。"星系的诞生发生在宇宙历史上被称为"再电离纪元"的时期,当时一些第一批星系的能量和光线冲破了氢气迷雾。研究人员正是利用詹姆斯-韦伯太空望远镜的红外视觉捕捉到了这些大量的氢气。这是迄今为止科研人员发现的对寒冷的中性氢气最遥远的测量,氢气是恒星和星系的组成部分。关于早期宇宙宇宙的"生命"始于大约 138 亿年前的一次巨大爆炸宇宙大爆炸。这一事件产生了大量的亚原子粒子,如夸克和电子。这些粒子聚集在一起形成质子和中子,随后凝聚成原子核。宇宙大爆炸后大约 38 万年,电子开始围绕原子核运行,宇宙中最简单的原子逐渐形成。第一批恒星是在几亿年后形成的。在这些恒星的内部,形成了我们周围更大、更复杂的原子。后来,恒星凝聚成星系。我们已知最古老的星系是在宇宙大爆炸后大约 3-4 亿年形成的。我们的太阳系诞生于大约 46 亿年前宇宙大爆炸后 90 多亿年。进一步了解我们的起源这项研究是由卡斯帕-埃尔姆-海因茨(Kasper Elm Heintz)与哥本哈根大学尼尔斯-玻尔研究所宇宙曙光中心的研究同事达拉赫-沃森(Darach Watson)、加布里埃尔-布拉莫尔(Gabriel Brammer)和博士生西蒙妮-维加尔(Simone Vejlgaard)等人密切合作完成的。这项最新成果让他们离实现这一目标更近了一步。研究小组已经申请了更多的詹姆斯-韦伯太空望远镜的观测时间,希望能够扩大他们的新成果,了解更多关于星系形成的最早时代的信息。"目前,我们正在绘制新观测到的星系形成图,其细节比以前更加丰富。与此同时,我们也在不断尝试突破我们所能看到的宇宙的极限。因此,也许我们会走得更远,"Simone Vejlgaard 说。研究人员认为,新知识有助于回答人类最基本的问题之一。"我们人类一直在问的一个最基本的问题是:'我们从哪里来?'在这里,我们通过揭示宇宙中一些最初的结构产生的时刻,拼凑出了更多的答案。"加布里埃尔-布拉莫尔(Gabriel Brammer)副教授总结说:"我们将进一步研究这个过程,希望能够拼凑出更多的拼图碎片。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

暗物质动力学探索奇异的卫星星系“Crater II”

暗物质动力学探索奇异的卫星星系“Crater II” 加州大学河滨分校物理学和天文学教授于海波说:"自2016年发现Crater II以来,人们曾多次尝试重现它的不寻常特性,但事实证明这非常具有挑战性。"他的团队在最近发表于《天体物理学期刊通讯》(TheAstrophysical Journal Letters)的一篇论文中对Crater II的起源做出了解释。卫星星系是一个较小的星系,它围绕着一个较大的主星系运行。暗物质占宇宙物质的85%,它可以在引力的作用下形成一个球形结构,称为暗物质晕。暗物质晕看不见摸不着,它渗透并包围着像Crater II这样的星系。Crater II极其寒冷,这表明它的光环密度很低。我们的银河系被大约 50 个矮星系包围着。这些星系中的大多数只能通过望远镜来识别,并以它们出现在天空中的星座来命名(例如天龙座、雕刻家座或狮子座)。不过,两个最明显的矮星系被称为大麦哲伦云(LMC)和小麦哲伦云(SMC),它们很容易被肉眼看到。资料来源:ESA/Gaia/DPACCrater II在银河系的潮汐场中演化,经历了与宿主星系的潮汐相互作用,类似于地球海洋因月球引力而经历潮汐力。理论上,潮汐相互作用可以降低暗物质晕的密度。然而,对Crater II环绕银河的轨道的最新测量结果表明,潮汐相互作用的强度太弱,不足以降低卫星星系的暗物质密度,从而与其测量结果保持一致如果暗物质是由冷的、无碰撞的粒子构成的,正如流行的冷暗物质理论(或称CDM)所预期的那样。另一个谜题是,当卫星星系在银河系的潮汐场中演化时,潮汐相互作用会缩小卫星星系的体积,因此Crater II怎么会有这么大的体积呢?于和他的团队引用了一种不同的理论来解释Crater II的特性和起源。该理论被称为"自相互作用暗物质"(self-interacting dark matter,简称SIDM),它可以令人信服地解释各种暗物质的分布。该理论认为,暗物质粒子通过暗力进行自我相互作用,在靠近星系中心的地方相互发生强烈碰撞。于说:"我们的工作表明,SIDM可以解释Crater II的不寻常特性。关键的机制是暗物质的自我相互作用使Crater II的光环热化,并产生一个浅密度核心,也就是说,暗物质密度在小半径处是扁平的。相反,在CDM光环中,密度会向星系中心急剧增加。"在 SIDM 中,与Crater II轨道测量结果一致的相对较小的潮汐相互作用强度就足以降低Crater II的暗物质密度,这与观测结果是一致的。"重要的是,星系的大小在SIDM光环中也会扩大,这就解释了Crater II的巨大体积。暗物质粒子在有芯的SIDM光环中比在'脆弱'的CDM光环中结合得更松散。我们的工作表明,SIDM比CDM更能解释Crater II的起源。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

更精确的测量工作重新定义仙王座恒星的脉动模式和双星系统动力学

更精确的测量工作重新定义仙王座恒星的脉动模式和双星系统动力学 RS Puppis 是最亮的仙王座变星之一,在六周的周期内有节奏地变亮和变暗。资料来源:美国国家航空航天局、欧洲航天局、哈勃遗产小组(STScI/AURA)-哈勃/欧洲合作组织尽管仙王座非常重要,但研究仙王座却充满挑战。它们的脉动和与伴星的潜在相互作用产生了复杂的模式,难以准确测量。多年来使用的不同仪器和方法导致数据不一致,使我们对这些恒星的了解更加复杂。EPFL的天体物理学家理查德-安德森(Richard I. Anderson)说:"利用高清测速仪追踪仙王座的脉动,可以让我们深入了解这些恒星的结构以及它们是如何演变的。尤其是对恒星沿视线扩张和收缩速度的测量即所谓的径向速度为从太空进行精确亮度测量提供了重要的对应数据。然而,由于径向速度的收集成本高昂,而且很少有仪器能够收集到高质量的径向速度,因此一直迫切需要高质量的径向速度。"安德森现在带领一个科学家团队,通过"半人马座半径速度项目"(VELOCE)来实现这一目标。"半人马座半径速度项目"是一个大型合作项目,历时12年,在2010年至2022年期间利用先进的光谱仪收集了258颗半人马座径向速度的18000多个高精度测量数据。"这个数据集将作为一个锚,把不同望远镜的仙王座观测数据跨时间地联系起来,希望能激发社区的进一步研究"。VELOCE 是洛桑联邦理工学院、日内瓦大学和鲁汶大学合作的成果。它以智利的瑞士欧拉望远镜和拉帕尔马的佛兰德墨卡托望远镜的观测数据为基础。安德森在日内瓦大学攻读博士学位期间开始了 VELOCE 项目,在美国和德国担任博士后期间继续开展该项目,现在已在洛桑联邦理工学院完成了该项目。安德森的博士生乔尔达诺-维维亚尼(Giordano Viviani)为 VELOCE 数据的发布发挥了重要作用。Viviani说:"测量结果具有极高的精确度和长期稳定性,这使我们能够对仙王座类天体如何发生脉动有了有趣的新认识。脉动导致视线速度变化高达 70 公里/秒,即大约 25 万公里/小时。我们对这些变化的测量精度通常为 130 千米/小时(37 米/秒),在某些情况下甚至达到 7 千米/小时(2 米/秒),这大致相当于人类快速行走的速度。"为了获得如此精确的测量结果,VELOCE 研究人员使用了两台高分辨率分光仪,它们可以分离和测量电磁辐射的波长:北半球的HERMES和南半球的CORALIE。除 VELOCE 外,CORALIE 因发现系外行星而闻名,而 HERMES 则是恒星天体物理学的主力。这两台摄谱仪探测到了仙王座星光的微小变化,表明了它们的移动。研究人员使用了先进的技术来确保测量结果的稳定性和准确性,对任何仪器漂移和大气变化进行校正。安德森解释说:"我们利用多普勒效应测量径向速度。这与警察用来测量你的速度的效果相同,也是你从救护车接近或远离你时的音调变化中了解到的效果。"VELOCE 观测以前所未有的精确度追踪仙王座恒星的膨胀和收缩。左图:观测到的仙王座原型 Delta Cephei 星因脉动而改变波长的光谱。右图:由 VELOCE 测得的径向速度曲线,并用星形符号显示了恒星的变异大小(不按比例)。资料来源:R.I. Anderson(EPFL)VELOCE 项目发现了一些有关仙王座恒星的迷人细节。例如,VELOCE 数据提供了迄今为止最详细的赫兹普隆级数恒星脉动中的一种模式显示了以前不为人知的双峰凸起,与脉动恒星的理论模型相比,这些数据将为更好地理解仙王座恒星的结构提供线索。研究小组发现,几颗仙王座恒星的运动表现出复杂的调制变异性。这意味着这些恒星的径向速度变化无法用简单、规律的脉动模式来解释。换句话说,虽然我们预期类仙王座会以可预测的节奏进行脉动,但 VELOCE 数据却揭示了这些运动中额外的、意想不到的变化。这些变化与传统上用来描述脉动的理论模型并不一致。安德森的博士后亨利卡-内策尔(Henryka Netzel)说:"这表明这些恒星内部存在着更复杂的过程,比如恒星不同层之间的相互作用,或者额外的(非径向)脉动信号,这可能为通过星震学确定仙王座恒星的结构提供了机会。基于 VELOCE 的此类信号的首次探测结果已在一篇论文中进行了报告(论文正在出版中)。"这项研究还确定了 77 颗属于双星系统(两颗恒星绕着对方运行)的仙王座恒星,并发现了另外 14 颗候选恒星。由安德森的前博士后 Shreeya Shetye 领导的另一篇论文详细描述了这些系统,加深了我们对这些恒星如何演化和相互作用的了解。Shetye 说:"我们发现,大约每三颗仙王座恒星中就有一颗有一个看不见的伴星,我们可以通过多普勒效应来确定它的存在。"安德森说:"了解仙王座的性质和物理原理非常重要,因为它们告诉我们恒星是如何演化的,也因为我们依靠它们来确定距离和宇宙膨胀率。此外,VELOCE 为欧空局盖亚(Gaia)飞行任务的类似但不太精确的测量提供了最好的交叉检验,盖亚飞行任务最终将进行最大规模的仙王座径向速度测量。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

新研究揭示了星系簇和星系团之间比以前所理解的更深的区别

新研究揭示了星系簇和星系团之间比以前所理解的更深的区别 天文学家们普遍认为,星系团和星系簇的区别主要在于它们所包含的星系数量星系团中的星系数量较少,而星系簇中的星系数量较多。塔尔图大学塔尔图天文台(Tartu Observatory of the University of Tartu)的天文学家们在马雷特-艾纳斯托(Maret Einasto)的带领下决定对此进行研究,并发现了星系群和星系团之间的更多差异。宇宙的结构可以被描述成一个巨大的网络,一个宇宙网,由单个星系链(丝状)和小星系群连接着丰富的星系群和星系团,这些星系群和星系团可以包含成千上万个星系。星系系统之间有巨大的空隙,空隙中几乎看不到任何物质(星系和气体)。星系团和星系簇又可以形成更大的星系系统,称为超星系团。研究目标和方法在研究中,塔尔图天文学家使用了有关星系团、星系团中最亮的星系(即所谓的主星系)及其周围环境的数据。研究的目的是将这些数据结合起来,观察能否为不同大小的星系群的可能分类提供新的信息。研究结果表明,星系群和星系团可以分为两类,它们的性质截然不同。在富星系团和贫星系团中,影响星系团和星系簇中主要星系形成和演化的物理过程是不同的。在这项工作中,研究人员用两种不同的方式描述了星系团的环境。首先,他们用一般密度场来描述宇宙网,超星系团是最大的高密度区域,而空洞则是低密度区域。其次,他们计算了每个星系群与最近的丝轴的距离。这个距离显示了星系群是在丝状轴中,还是离丝状轴很近或很远。每个彩色圆圈代表一个星系群或星系团。最富集的星系团用红色标出;它们是大力神超星系团和狮子座超星系团中最富集的星系团。侧面板显示的是这些星系团中最亮的星系,这些星系来自斯隆数字数据库。黄色、绿色和蓝色圆圈代表从最亮到最暗的星系团。资料来源:Maret Einasto研究人员将星系群的主星系分为没有活跃恒星形成的星系(这些星系主要为红色)和目前恒星形成活跃的星系(年轻恒星使这些星系呈现蓝色)。不过,他们也在星系群的主星系中发现了红色恒星形成星系。亮度、位置和属性通过比较不同光度(或丰富度)星团中主星系的性质,发现星团主要分为两类高光度星团和星团,其中几乎所有的主星系都是不形成恒星的红色星系;低光度贫乏星团,其中的主星系除了不形成恒星的星系外,还可能有形成恒星的蓝色或红色星系。星系群和星系团之间的差异并不局限于光度每个样本都可以根据一个特征分成两个。此外,研究还发现,高亮度星系团和星系簇都位于高密度区域的丝状结构中。所有最亮和最丰富的星系团都位于超星系团的丝状结构中。与此相反,低亮度星系团和单个星系在宇宙网中随处可见,包括在低密度区域在空隙中,位于稀疏的丝状结构中,甚至远离丝状结构。有趣的是,在超星系团中,具有相同数量成员的低亮度星系团的亮度要比超星系团之外的星系团高得多。研究表明,富星系群中不再有恒星形成的主星系与有活跃恒星形成的主星系的星系群的动力学特性也有所不同。在前者中,主星系大多位于星系群或星团中心,而恒星形成中的主星系可能距离星系群中心相当遥远。天文学家发现,以往研究中已知的主星系恒星速度散度与星系群速度散度之间的关系,在星团非常丰富的情况下并不成立,尤其是在主星系不形成恒星的星团中。描述宇宙结构的特性及其如何形成和演化是宇宙学的基本任务之一。这些结果扩展了我们对星系团和星系簇及其主星系在宇宙网络中的形成和演化的认识。富星系团只能在物质总密度足够高、恒星形成所需的气体充足的区域形成。在这样的区域里,富星系团可以被其他(同样富裕的)星系团和星系群联合起来。在低密度区域(目前的空白区域),只能形成相当贫乏的星团,它们之间的距离相当远,因此很少有合并的情况。研究结果还表明,在富星系群和贫星系群中,影响星系群和星团中主星系形成和演化的物理过程是不同的。单个星系和小星系团中主星系的演化主要受其暗物质晕内部和周围过程的影响;其他星系和更遥远环境(星系团合并等)的影响主要在富星系团中很重要。我们的研究还强调了星系超星系团作为星系和星系系统形成和演化的独特环境的重要性。在研究星系和星系群方面,工作组下一步将利用新的观测数据,包括非常暗的星系数据。塔尔图天文台参与了许多这样的观测计划。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人