天文学家解开1936年猎户座FU戏剧性爆发之谜

天文学家解开1936年猎户座FU戏剧性爆发之谜 艺术家对 FU~Ori 大尺度视图的印象。图像显示了爆发产生的强大恒星风与恒星形成的残余包膜相互作用所产生的外流。恒星风驱动强烈的冲击波进入包膜,而被冲击波卷起的 CO 气体正是新的 ALMA 所揭示的。资料来源:NSF/NRAO/S.Dagnello这一奇怪的现象激发了人们对同名恒星(FUor 星)进行新的分类。FUor恒星会突然爆发出耀眼的亮度,然后在许多年后再次变暗。现在人们已经明白,这种变亮是由于恒星通过引力吸积从周围环境中吸收了能量,而引力吸积是形成恒星和行星的主要力量。然而,如何以及为什么会发生这种情况仍然是个谜直到现在,这要归功于使用阿塔卡马大型毫米/亚毫米波阵列(ALMA)的天文学家们。"FU Ori已经吞噬了近100年的物质来维持它的爆发。我们终于找到了这些年轻爆发恒星如何补充质量的答案,"北美ALMA区域中心副经理、美国国家射电天文台(National Radio Astronomy Observatory)科学家安东尼奥-黑尔斯(Antonio Hales)解释说,他也是这项研究的主要作者,研究成果于4月29日发表在《天体物理学杂志》(Astrophysical Journal)上。"我们第一次有了直接的观测证据,证明喷发的燃料是什么物质"。放大 FU Ori 双星系统和新发现的吸积流。这幅艺术家印象图显示了新发现的吸积流不断从包层向双星系统输送质量。图片来源:NSF/NRAO/S.DagnelloALMA的观测结果显示,有一股细长的一氧化碳流落到猎户座FU上。这些气体似乎没有足够的燃料来维持当前的爆发。相反,这个吸积流被认为是以前落入这个年轻恒星系统的一个更大特征的遗留物。黑尔斯解释说:"有可能是过去与更大的气体流相互作用导致系统变得不稳定,引发亮度增加。我们能够用一台仪器探索的角尺度范围确实非同一般。"天文学家使用了几种配置的 ALMA 天线来捕捉来自猎户座 FU 的不同类型的发射,并探测进入该恒星系统的质量流。他们还结合新颖的数值方法,将质量流建模为吸积流并估算其特性。欧洲南方天文台(ESO)的博士候选人阿希什-古普塔(Aashish Gupta)是这项工作的合著者之一,他开发了用于模拟吸积流的方法。智利圣地亚哥大学(USACH)的塞巴斯蒂安-佩雷斯(Sebastián Pérez)是智利年轻系外行星及其卫星千年核心(YEMS)的主任,也是这项研究的共同作者。放大 FU Ori 双星系统和新发现的吸积流。这幅艺术家印象图显示了新发现的吸积流不断从包层向双星系统输送质量。图片来源:NSF/NRAO/S.Dagnello这些观测还揭示了猎户座FU中缓慢移动的一氧化碳外流。这种气体与最近的爆发无关。相反,它与在其他原恒星天体周围观测到的外流类似。黑尔斯补充说:"通过了解这些奇特的 FUor 恒星是如何形成的,我们证实了我们对不同恒星和行星如何形成的了解。我们相信,所有恒星都会经历爆发事件。这些爆发非常重要,因为它们会影响新生恒星周围吸积盘的化学成分以及它们最终形成的行星。自 2012 年 ALMA 首次观测以来,我们一直在研究猎户座 FU。终于有了答案,这太令人着迷了。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

天文学家在天兔座螺旋星系IC 438找寻Iax型超新星的秘密

天文学家在天兔座螺旋星系IC 438找寻Iax型超新星的秘密 这幅哈勃太空望远镜拍摄的图像显示的是螺旋星系 IC 438,位于 1.3 亿光年外的天兔座。天兔座被大犬座、猎户座和小犬座等星座环绕,是国际天文学联合会正式认可的 88 个星座之一,这些星座将夜空划分为不同的区域,以便于识别天体。图片来源:ESA/哈勃和 NASA,R. J. Foley(加州大学圣克鲁兹分校)天兔座的两侧分别是大犬座(大狗)和猎户座(猎人),而小犬座(小犬)就在附近,这意味着在星座的艺术表现中,天兔座经常被猎户座和他的两只猎狗追逐。天兔座是国际天文学联合会(IAU)正式承认的 88 个星座之一。值得说明的是,虽然实际的星座本身只由少数恒星组成,但这些恒星所覆盖的天空区域通常用星座的名称来表示。例如,当我们说 IC 438 位于天兔座时,并不是说这个星系是这个星座的一部分也许很明显,因为它不是一颗恒星,而是整个星系,相反,我们指的是它位于天兔座恒星覆盖的天空区域。国际天文学联合会的 88 个正式星座绝不是人类描述过的唯一星座。人类对恒星的研究和命名由来已久,不同的文化当然也有自己的星座。国际天文学联合会的星座是以欧洲为中心的,其中有许多来自托勒密的星座列表。总的来说,88 个星座将夜空划分为 88 个完全覆盖夜空的区域,因此任何天体的大致位置都可以用 88 个星座中的一个来描述。哈勃对这个星系进行研究的动力是2017年发生的Iax型超新星,这是一种由两颗恒星组成的双星系统产生的超新星。虽然这些数据是在超新星发生三年多后获得的,因此在这张图片中看不到超新星,但通过研究像这样的超新星的后遗症,我们仍然可以学到很多东西。编译自/ScitechDaily ... PC版: 手机版:

封面图片

天文学家揭开宇宙最重黑洞双星之谜

天文学家揭开宇宙最重黑洞双星之谜 两个超大质量黑洞的合并是一个早已被预测到的现象,尽管从未被直接观测到过。天文学家提出的一个理论是,这些系统的质量如此之大,以至于它们耗尽了宿主星系中驱动合并所需的恒星物质。利用双子座北望远镜的档案数据,一个天文学家小组发现了一个双黑洞,为这一观点提供了有力的证据。据研究小组估计,这个双黑洞的质量是太阳质量的280亿倍,是迄今为止测量到的最重的双黑洞。这次测量不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量黑洞双星的质量在阻止超大质量黑洞合并方面起着关键作用。资料来源:NOIRLab/NSF/AURA/J. daSilva/M.Zamani几乎每个大质量星系的中心都有一个超大质量黑洞。当两个星系合并时,它们的黑洞会形成一对双星,这意味着它们处于相互束缚的轨道上。据推测,这些双星最终会合并,但这一现象从未被观测到过[1]。几十年来,天文学家们一直在讨论这样的事件是否可能发生。在最近发表于《天体物理学报》(TheAstrophysical Journal)的一篇论文中,一个天文学家小组提出了对这一问题的新见解。一个天文学家小组利用由美国国家科学基金会NOIRLab 负责运行的双子座北望远镜(国际双子座天文台的一半)提供的档案数据,测量出了迄今发现的最重的一对超大质量黑洞。两个超大质量黑洞的合并是一种早已被预测到的现象,但从未被观测到过。这对超大质量黑洞提供了一些线索,说明为什么宇宙中发生这种事件的可能性如此之小。双子座北区前所未有的洞察力研究小组利用夏威夷双子座北望远镜(由美国国家科学基金会资助的NOIRLab运行的国际双子座天文台的二分之一)的数据,分析了位于椭圆星系B2 0402+379内的一个超大质量黑洞双星。这是迄今为止唯一一个被分辨得足够详细,可以分别看到两个天体的超大质量黑洞双星,[2]而且它还保持着迄今为止直接测量到的最小间隔记录仅仅 24 光年[3]。虽然如此接近的分离预示着强大的合并,但进一步的研究发现,这对天体已经在这个距离上停滞了 30 多亿年,这不禁让人产生疑问:是什么阻碍了合并?双黑洞合并的挑战为了更好地了解这个系统的动态及其停止的合并,研究小组研究了双子座北区的双子座多目标摄谱仪(GMOS)的档案数据,这些数据使他们能够确定黑洞附近恒星的速度。"GMOS出色的灵敏度使我们能够测绘出恒星在靠近星系中心时的速度,"论文共同作者、斯坦福大学物理学教授罗杰-罗曼尼(Roger Romani)说。"有了这些,我们就能推断出居住在那里的黑洞的总质量。"据研究小组估计,这对双星的质量是太阳质量的280亿倍,是迄今测量到的最重的双黑洞。这一测量结果不仅为双星系统的形成及其宿主星系的历史提供了宝贵的背景资料,而且还支持了一个由来已久的理论,即超大质量双黑洞的质量在阻止潜在合并中起着关键作用[4]。"为国际双子座天文台提供服务的数据档案蕴藏着一座尚未开发的科学发现金矿,"国家科学基金会国际双子座天文台项目主任马丁-斯蒂尔说,"对这个极端超大质量双黑洞的质量测量是一个令人敬畏的例子,说明了探索这一丰富档案的新研究可能产生的影响。"二进制系统的形成与未来了解这个双星是如何形成的,有助于预测它是否以及何时会合并一些线索表明,这对双星是通过多个星系合并形成的。首先,B2 0402+379 是一个"化石星系团",这意味着它是整个星系团的恒星和气体合并成一个大质量星系的结果。此外,两个超大质量黑洞的存在,加上它们巨大的总质量,表明它们是由多个星系的多个较小黑洞合并而成的。星系合并后,超大质量黑洞不会正面相撞。相反,当它们进入一个有束缚的轨道时,就会开始互相弹射。它们每经过对方一次,能量就会从黑洞传递到周围的恒星。随着它们能量的流失,这对黑洞被越拖越近,直到相距仅有一光年时,引力辐射占据上风,它们才会合并。这一过程已经在成对恒星质量的黑洞中被直接观测到有史以来的第一次记录是在2015年通过引力波的探测但从未在超大质量的双星中观测到过。停滞不前的合并与未来联合的可能性通过对该星系巨大质量的新了解,研究小组得出结论,需要有数量特别多的恒星才能减缓双星轨道的速度,使它们如此接近。在这个过程中,黑洞似乎甩掉了它们附近几乎所有的物质,使得星系核心缺少恒星和气体。由于没有更多的物质来进一步减缓这对天体的轨道,它们的合并在最后阶段停滞了。罗曼尼说:"通常情况下,黑洞对较轻的星系似乎有足够的恒星和质量来驱动两者迅速结合在一起。由于这对黑洞非常重,因此需要大量恒星和气体来完成这项工作。但是这对黑洞已经将中央星系中的这些物质清除干净,使它停滞不前,可供我们研究。"这对天体究竟会克服停滞状态,最终以数百万年的时间尺度合并,还是永远继续在轨道上徘徊,目前尚无定论。如果它们真的合并,产生的引力波将比恒星质量的黑洞合并产生的引力波强大一亿倍。这对天体有可能通过另一次星系合并来征服最后的距离,这将为星系注入更多的物质,或者有可能是第三个黑洞,从而使这对天体的轨道慢到足以合并。不过,鉴于B2 0402+379是一个化石星系团,另一个星系合并的可能性不大。"我们期待着对B2 0402+379的内核进行后续调查,我们将研究其中存在多少气体,"论文第一作者、斯坦福大学本科生Tirth Surti说。"这应该能让我们更深入地了解超大质量黑洞最终能否合并,或者它们是否会作为双星搁浅。"说明虽然有证据表明超大质量黑洞之间的距离只有几光年,但似乎没有一个黑洞能够跨越这个最终距离。关于这种事件是否可能发生的问题被称为"最终-秒差距问题",几十年来一直是天文学家们讨论的话题。以前曾对含有两个超大质量黑洞的星系进行过观测,但在这些情况下,它们相距数千光年太远了,不可能像在 B2 0402+379 中发现的双星那样处于相互结合的轨道上。其他黑洞动力源的距离可能更小,不过这些都是通过间接观测推断出来的,因此最好归类为候选双星。这一理论最早是由贝格尔曼等人于 1980 年提出的,根据数十年来对星系中心的观测,这一理论一直被认为是存在的。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天文学家揭示暗物质在星系演化中的作用

天文学家揭示暗物质在星系演化中的作用 星系图像,左侧为恒星部分,右侧(负片)为星系光环中的暗物质。资料来源:Gabriel Pérez Díaz, SMM (IAC) / EAGLE 团队传统上对星系演化的观测研究主要集中在普通物质的作用上,尽管普通物质只占星系质量的很小一部分。几十年来,人们一直在理论上预测暗物质对星系演化的影响。然而,尽管做了很多努力,人们对此并没有达成明确的共识。现在,由IAC团队领导的研究首次通过观测证实了暗物质对星系演化的影响。暗物质对星系的影响显而易见,因为我们可以测量它,但暗物质对星系演化的影响是有人提出过的,尽管我们没有观测研究它的技术。为了研究暗物质的影响,研究小组集中研究了星系中恒星的质量与从其旋转中可以推断出的质量(称为总动力质量)之间的差异。研究结果表明,恒星的年龄、金属含量、形态、角动量和形成速度不仅取决于这些恒星的质量,还取决于总质量,这就意味着要把暗物质成分包括在内,而暗物质成分符合对光环质量的估计。"我们看到,在恒星质量相等的星系中,恒星群的表现会因星系光环中暗物质的多寡而不同,换句话说,星系从形成到现在的演化过程会因星系所处的光环而改变。"文章合著者之一、IAC 研究员伊格纳西奥-马丁-纳瓦罗(Ignacio Martín Navarro)补充说:"如果星系所处的光环质量较大或较小,那么星系随时间的演化就会不同,这将反映在星系所含恒星的性质上。"今后,研究小组计划对距离银河系中心不同距离的恒星群进行测量,并证明恒星的特性对暗物质晕的依赖是否在所有半径范围内都保持不变。研究的下一步将是研究暗物质晕与宇宙大尺度结构之间的关系。这些暗物质光环并不是单独产生的,它们由细丝连接起来,构成了大尺度结构的一部分,被称为'宇宙网'。光环的质量似乎改变了星系的属性,但这可能是每个光环在宇宙网中所处位置的结果。在未来几年里,希望能够看到这种大尺度结构在我们所研究的范围内产生的影响。这项研究是基于卡拉阿托遗留整体场区(CALIFA)的260个星系进行的,卡拉阿托遗留整体场区是一个国际项目,在文章的另一位合著者赫苏斯-法尔孔-巴罗佐(Jesús Falcón Barroso)的协调下,IAC积极参与了该项目。他说:"这项调查提供了光谱信息和前所未有的星系空间覆盖范围。我们对这些星系进行了高分辨率观测,获得了它们运动特性的详细测量数据,这使我们能够非常精确地研究恒星的运动,从而推断出星系的总质量。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

天文学家发现双黑洞系统“打嗝”的原因

天文学家发现双黑洞系统“打嗝”的原因 在距离地球 8 亿光年的一个星系中,有一个超大质量黑洞,在 2020 年 12 月之前,它一直保持着相对安静的状态。当时,天文学家在电磁波谱的 X 射线部分探测到了一个微弱的"光"爆发。这次爆发的间隔异常规律,每隔 8.5 天就会出现一次。研究这一案例的国际天文学家小组认为,这一奇特现象类似于某种宇宙"打嗝"。最新发表的一项研究解释说,这些周期性的"打嗝"现象很可能是由两个黑洞相互绕行造成的,其中较小的奇点与位于遥远星系中心的超大质量黑洞的吸积盘发生碰撞。麻省理工学院研究科学家、论文合著者Dheeraj"DJ"Pasham指出,国际空间站上的NICER(中子星内部成分探测器)X射线望远镜在研究这些宇宙"小嗝"的发生过程中发挥了至关重要的作用。帕沙姆利用分配给他的时间将望远镜对准了发射 X 射线暴的星系。在收集了四个月的数据后,研究人员观察到高能辐射的下降周期为 8.5 天。帕沙姆说:"这几乎就像一颗恒星的亮度在一颗行星穿过它的前方时会变暗一样,但在这种情况下,整个星系的亮度都受到了影响。"受捷克物理学家发表的关于超大质量黑洞有一个较小的轨道伴星的理论启发,帕沙姆利用自己通过NICER天文台收集的数据进行了模拟。数据支持了这一理论,但2020年12月突然出现的X射线暴之谜仍未解开。研究人员现在认为,这些光爆是由"潮汐破坏事件"(TDE)引起的。"潮汐破坏事件"是一场宇宙大灾难,涉及一颗恒星被黑洞的引力拉扯,然后被撕成碎片。TDE提供了足够的物质来丰富超大质量黑洞周围微弱的吸积盘,而吸积盘又受到穿过吸积盘的较小黑洞的干扰。帕沙姆现在认为,这些不寻常的双黑洞系统可能是宇宙中相对常见的现象。 ... PC版: 手机版:

封面图片

天文学家在银河系发现巨型古恒星“老烟枪”

天文学家在银河系发现巨型古恒星“老烟枪” 赫特福德大学的菲利普-卢卡斯(Philip Lucas)教授说:"它们突然抛出物质。这是一种新型恒星,它们似乎都聚集在天空的同一区域,非常靠近银河系的中心。"天文学家们的目的是捕捉很少见的新生恒星被称为原恒星在经历相当于恒星生长高峰的时期。在此期间,年轻恒星通过吞噬周围的恒星形成气体迅速获得质量,从而导致光度突然增加。研究小组跟踪了数亿颗恒星,发现了 32 颗爆发的原恒星,它们的亮度至少增加了 40 倍,有些甚至增加了 300 倍以上。然而,银河系中心附近的另一组红巨星却意外地出现在分析中。研究人员利用欧洲南方天文台的甚大望远镜对这些恒星进行了更详细的研究,其中七颗恒星被认为是一种新型的红巨星,研究人员将其命名为"老烟枪"。卢卡斯认为,恒星内部的对流和不稳定性可能会引发巨大的烟柱释放。"这些云团足有太阳系大小,"卢卡斯说。"我们猜测,这些是朝一个方向喷发的尘埃,可能来自恒星表面的一块区域。"这些发现具有更广泛的意义,因为从垂死恒星释放到星际空间的物质为下一代恒星播下了种子。卢卡斯说:"发现一种能抛出物质的新型恒星,可能会对其他星系的核圆盘和富含金属区域的重元素扩散产生更广泛的影响。"研究结果发表在《英国皇家天文学会月刊》(Monthly Notices of the Royal Astronomical Society)上。 ... PC版: 手机版:

封面图片

天文学家发现银河系混乱背后的意外驱动力

天文学家发现银河系混乱背后的意外驱动力 最近发表在《英国皇家天文学会月刊》(MNRAS)上的一项新研究发现,最重要的因素并不是这些。研究表明,恒星的随机运动趋势主要是由星系的年龄所驱动的随着时间的推移,情况会变得一团糟。第一作者、悉尼大学 ASTRO 3D 研究员 Scott Croom 教授说:"当我们进行分析时,我们发现年龄始终是最重要的参数,无论我们如何切片或切块。一旦考虑到年龄因素,基本上就没有环境趋势了,质量也是如此。如果你发现一个年轻的星系,无论它在什么环境中,它都会旋转,而如果你发现一个古老的星系,无论它是在稠密的环境中还是在虚空中,它的轨道都会更加随机。"在 SAMI 星系巡天观测中观测到的年轻星系(上图)和老星系(下图)的对比。左侧面板是来自斯巴鲁望远镜的常规光学图像。中间是来自 SAMI 的旋转速度图(蓝色朝向我们,红色远离我们)。右边是测量随机速度的地图(颜色越红,随机速度越大)。两个星系的总质量相同。顶部星系的平均年龄为 20 亿年,自转速度高,随机运动速度低。底部星系的平均年龄为 125 亿年,自转速度较慢,随机运动较大。资料来源:Hyper Suprime-Cam 斯巴鲁战略计划研究小组成员还包括来自麦考瑞大学、斯威本科技大学、西澳大利亚大学、澳大利亚国立大学、新南威尔士大学、剑桥大学、昆士兰大学和大韩民国延世大学的科学家。以前的研究认为环境或质量是更重要的因素,这项研究更新了我们的认识。但第二作者 Jesse van de Sande 博士说,以前的研究并不一定是错误的。年轻的星系是恒星形成的超级工厂,而在年长的星系中,恒星形成已经停止。"我们知道年龄受环境影响。如果一个星系处于高密度环境中,它往往会停止恒星的形成。因此,处于高密度环境中的星系平均年龄较大,"van de Sande 博士说。"分析的重点是,不是生活在高密度环境中降低了他们的自旋能力,而是他们的年龄大了"。回到我们自己的银河系,它仍然有一个薄薄的恒星形成盘,因此仍然被认为是一个高自转星系。"但是,当我们仔细观察银河时,我们确实看到了一种叫做银河厚盘的东西。"Croom教授说:"就光线而言,它并不占主导地位,但它确实存在,而且那些恒星看起来比较古老,很可能是在早期从薄盘中被加热出来的,或者是在宇宙早期以更湍急的运动方式诞生的。"研究使用的数据来自 SAMI 银河巡天观测。SAMI 仪器由悉尼大学和盎格鲁-澳大利亚天文台(现 Astralis)于 2012 年制造。SAMI使用的是位于新南威尔士州库纳巴拉布兰附近赛丁泉天文台的盎格鲁-澳大利亚望远镜。它已经勘测了 3000 个星系的各种环境。通过这项研究,天文学家在试图了解星系形成的过程时,可以排除许多过程,从而对宇宙发展的模型进行微调。银河系研究的下一步将是开发更精细的星系演化模拟。"要做好模拟的挑战之一是需要高分辨率来预测发生了什么。"Croom教授说:"目前典型的模拟是基于质量相当于 10 万颗恒星的粒子,你无法解析星系盘中的小尺度结构。"悉尼大学赫克托星系巡天项目将帮助克鲁姆教授和他的团队利用英澳望远镜上的新仪器扩大这项工作,负责人茱莉亚-布莱恩特(Julia Bryant)教授说:"赫克托正在观测 15000 个星系,但光谱分辨率更高,即使在质量低得多的星系中也能测量出星系的年龄和自旋,并能获得更详细的环境信息。"ASTRO 3D主任Emma Ryan-Weber教授说:"这些发现回答了ASTRO 3D提出的一个关键问题:宇宙中的质量和角动量是如何演变的?SAMI 团队的这项细致工作揭示了星系的年龄决定了恒星的运行方式。这一关键信息有助于更清晰地了解宇宙的全貌。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人