量子气体显微镜QUIONE利用开创性的锶显微技术深入研究材料的微观特性

量子气体显微镜QUIONE利用开创性的锶显微技术深入研究材料的微观特性 量子物理学需要高精度传感技术来深入研究材料的微观特性。从最近出现的模拟量子处理器来看,所谓的量子气体显微镜已被证明是在原子层面了解量子系统的强大工具。这些设备可以产生分辨率极高的量子气体图像:它们可以检测到单个原子。现在,ICFO研究人员(西班牙巴塞罗那)Sandra Buob、Jonatan Höschele、Vasiliy Makhalov博士和Antonio Rubio-Abadal博士,在ICFO的ICREA教授Leticia Tarruell的领导下,解释了他们是如何制造出自己的量子气体显微镜的,该显微镜以希腊雪女神命名为QUIONE。该小组的量子气体显微镜是世界上唯一一台对锶量子气体的单个原子进行成像的显微镜,也是西班牙第一台此类显微镜。除了可以分辨单个原子的极具冲击力的图像之外,QUIONE 的目标是量子模拟。正如 ICREA 教授 Leticia Tarruell 所解释的那样:"量子模拟可以用来将非常复杂的系统归结为更简单的模型,进而理解当前计算机无法回答的开放性问题,例如为什么有些材料即使在相对较高的温度下也能无损耗地导电"。玻璃池图片,中间为锶气云 图源:ICFOICFO 小组在这一领域的研究获得了国家层面(西班牙皇家物理学会的奖励,以及 BBVA 基金会、Ramón Areces 基金会、La Caixa 基金会和 Cellex 基金会的项目和赠款)和欧洲层面(包括一个 ERC 项目)的支持。此外,作为加泰罗尼亚政府推广量子技术承诺的一部分,QUIONE 还得到了加泰罗尼亚政府通过企业与工作部数字政策秘书处提供的共同资助。这项实验的奇特之处在于,他们成功地将锶气体带入量子态,将其置于光学晶格中,使原子可以通过碰撞产生相互作用,然后应用单原子成像技术。这三个因素加在一起,使 ICFO 的锶量子气体显微镜在同类产品中独一无二。实验室地图和量子模拟器的位置。资料来源:ICFO为什么是锶?迄今为止,这些显微镜装置依赖于锂和钾等碱性原子,与锶等碱土原子相比,锂和钾的光学光谱特性更为简单。这意味着在这些实验中,锶可以提供更多的成分。事实上,近年来,锶的独特性质使其成为量子计算和量子模拟领域非常受欢迎的应用元素。例如,锶原子云可以用作原子量子处理器,从而解决目前经典计算机所无法解决的问题。总之,ICFO 的研究人员看到了锶在量子模拟方面的巨大潜力,他们开始着手制造自己的量子气体显微镜。QUIONE 就是这样诞生的。实验室中的团队。从左至右Sandra Buob、Antonio Rubio-Abadal、Vasiliy Makhalov、Jonatan Höschele 和 Leticia Tarruell。资料来源:ICFO为此,他们首先降低了锶气体的温度。利用几束激光的作用力,原子的速度可以降低到几乎不动的程度,几乎不移动,在短短几毫秒内就能将温度降低到几乎绝对零度。然后,量子力学定律就会支配它们的行为,原子就会显示出量子叠加和纠缠等新特征。之后,在特殊激光器的帮助下,研究人员激活了光晶格,使原子沿着空间排列成网格状。"你可以把它想象成一个鸡蛋盒,其中的各个位置实际上就是你放鸡蛋的地方。但我们用原子代替了鸡蛋,用光学晶格代替了纸盒,"文章的第一作者桑德拉-布布解释说。"蛋杯"中的原子相互影响,有时会发生量子隧道效应,从一个地方移动到另一个地方。原子间的这种量子动力学模拟了某些材料中电子的量子动力学。因此,对这些系统的研究有助于理解某些材料的复杂行为,而这正是量子模拟的关键理念。气体和光学晶格准备就绪后,研究人员立即用显微镜拍摄了图像,终于可以逐个原子地观察锶量子气体了。至此,"QUIONE"的建造工作已经取得了成功,但它的创造者们还想从中获得更多。因此,除了照片之外,他们还拍摄了原子的视频,并能够观察到,虽然原子在成像过程中应该保持静止,但它们有时会跳到附近的晶格部位。这可以用量子隧道现象来解释。"原子从一个位置"跳"到另一个位置。这是非常美丽的景象,因为我们亲眼目睹了原子固有量子行为的直接表现。最后,研究小组利用他们的量子气体显微镜证实,锶气体是一种超流体,一种没有粘性的物质流动的量子相。"我们突然关闭了晶格激光器,这样原子就可以在空间膨胀并相互干涉。由于超流体中原子的波粒二象性,这就产生了干涉图案。"安东尼奥-鲁比奥-阿巴达尔博士解释说:"当我们的设备捕捉到它时,我们验证了样品中超流体的存在。""对于量子模拟来说,这是一个非常激动人心的时刻,"ICREA 教授莱蒂西亚-塔鲁埃尔(Leticia Tarruell)说。"现在,我们的量子气体显微镜中又增加了锶,也许不久之后我们就能模拟更复杂、更奇特的材料。新的物质相有望出现。我们还期望获得更强的计算能力,将这些机器用作模拟量子计算机。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

新型AI技术打破了原子力材料表面成像技术的基本限制

新型AI技术打破了原子力材料表面成像技术的基本限制 原子力显微镜(AFM)是一种广泛使用的技术,可以定量绘制材料表面的三维图。然而,原子力显微镜的精度受到显微镜探针尺寸的限制。为了突破这一限制,我们开发了一种新型人工智能技术,使显微镜在材料分析中达到更高的分辨率。伊利诺伊大学香槟分校的研究人员开发的深度学习算法经过训练,可以从原子力显微镜图像中去除探针宽度的影响。据《纳米快报 》(Nano Letters)杂志报道, 该算法超越了其他方法,首次以低于显微镜探针尖端宽度的分辨率给出了真正的三维表面轮廓。材料表面成像技术的突破"精确的表面高度轮廓对于纳米电子学的开发以及材料和生物系统的科学研究至关重要,而原子力显微镜是一种能够无创测量轮廓的关键技术,"该项目负责人、工大材料科学与工程系教授张英杰说。"我们已经展示了如何更加精确地观察更小的东西,我们也展示了如何利用人工智能来克服看似无法克服的限制。"显微镜技术通常只能提供二维图像,基本上只能为研究人员提供材料表面的航拍照片。原子力显微镜可提供完整的地形图,准确显示表面特征的高度剖面。这些三维图像是通过在材料表面移动探针并测量其垂直偏转而获得的。经深度学习算法处理的原子力显微镜图像。左列包含模拟的原子力显微镜图像,中间一列包含经过算法处理和重建的图像,右列包含添加原子力显微镜效应之前的原始图像。来源:Nano Lett.如果表面特征接近探针尖端的大小(约 10 纳米),显微镜就无法分辨,因为探针变得太大,无法"感觉"出这些特征。几十年来,显微镜学家们一直意识到这一局限性,但伊利诺伊大学的研究人员是第一个给出确定性解决方案的人。"我们之所以求助于人工智能和深度学习,是因为我们想获得高度剖面精确的粗糙度而不受传统数学方法的固有限制。"研究人员开发了一种具有编码器-解码器框架的深度学习算法。它首先通过将原始原子力显微镜图像分解为抽象特征对其进行"编码"。在对特征表示进行处理以消除不良影响后,再将其"解码"回可识别的图像。为了训练该算法,研究人员生成了三维结构的人工图像,并模拟了它们的原子力显微镜读数。然后构建算法,利用探针尺寸效应转换模拟原子力显微镜图像,并提取基本特征。博纳吉里说:"实际上,我们必须做一些非标准的事情才能做到这一点。典型的人工智能图像处理的第一步是根据某个标准重新调整图像的亮度和对比度,以简化比较。但在我们的案例中,绝对亮度和对比度才是有意义的部分,因此我们不得不放弃第一步。这让问题变得更具挑战性。"为了测试他们的算法,研究人员在硅主机上合成了已知尺寸的金和钯纳米粒子。该算法成功消除了探针尖端效应,并正确识别了纳米粒子的三维特征。张说:"我们已经给出了概念验证,并展示了如何使用人工智能来显著改善原子力显微镜图像,但这项工作仅仅是个开始。与所有人工智能算法一样,我们可以通过在更多更好的数据上进行训练来改进它,但前进的道路是明确的。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

《显微镜下的大明之丝绢案 第1集》 剧情 悬疑 古装

显微镜下的大明之丝绢案 第1集张若昀 / 王阳 / 戚薇 / 吴刚 / 高亚麟

封面图片

《显微镜下的大明之丝绢案 第7集》 剧情 悬疑 古装

显微镜下的大明之丝绢案 第7集张若昀 / 王阳 / 戚薇 / 吴刚 / 高亚麟

封面图片

世界首台双光束线光电子动量显微镜在日本亮相

世界首台双光束线光电子动量显微镜在日本亮相 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 光束线 BL6U、BL7U、新建的 BL7U 分支和电子存储环以虚线标出。左上(下)插图显示了利用 BL6U(BL7U 分支)测量的金(111)表面的光电子动量图案。资料来源:分子科学研究所 Fumihiko Matsui 教授小组日本 UVSOR 设施推出的首台双光束线光电子动量显微镜可用于研究电子在材料中的行为,尤其是分析价轨道方面带来了突破性进展,推动了材料科学的发展。分子科学研究所/高等研究大学(SOKENDAI)的研究人员与大阪大学(Osaka University)合作,对这一先进的分析仪和实验站进行了升级,将两条起伏光束线用作激发源。通过将现有的真空紫外线(VUV)光束线 BL7U 分支开来,现在除了来自光束线 BL6U 的软 X 射线光束外,光电子动量显微镜还可以同时使用 VUV 光。这台世界上第一台"双光束线光电子动量显微镜"可以:1)使用掠入射软 X 射线光进行元素选择性测量;2)使用正常入射紫外光进行高度对称测量。利用这些光源的灵活性,为电子行为的多模式分析开辟了一条新途径。要特别强调的是,在正常入射配置下进行光电子能谱分析,全世界只有 UVSOR 的这台仪器可以做到。这种正常入射的高对称配置尤其有利于通过光子偏振依赖的过渡矩阵元素分析对价电子轨道进行精确分析。在这项工作中将这种方法应用于金(111)表面的价电子。这种独特的双光束线光电子动量显微镜能让人更深入地了解材料中的电子行为,在凝聚态物理、分子科学和材料科学领域带来创新。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国科大研发超轻头戴荧光显微镜TINIscope设备

中国科大研发超轻头戴荧光显微镜TINIscope设备 中国科学技术大学、中国科学院深圳先进技术研究院和深圳理工大学(筹)的研究团队近日联合开发了一种名为TINIscope的超紧凑头戴式荧光显微镜。这款显微镜的重量仅为0.43克,远轻于传统头戴式设备的约2克重量。传统设备在小鼠等小动物头上植入四个时,因负重过大而可能影响其正常自由活动。 为了解决这一问题,研究团队采用了具备串行输出功能的小型图像传感器芯片,并解决了信号传输的难题。在设计上,他们创新性地改变了传统的垂直排列方式,使得TINIscope的光路设计更加灵活,最小间距仅为1.2毫米。此外,研究团队还引入了换向装置和完整的实验采集系统,以解决动物在自由活动时可能遇到的电缆缠绕问题。 这项研究为脑科学领域带来了全新的研究工具,能够实现对任意四个目标脑区的同步记录。TINIscope的安装角度易于调节,能够满足多种成像需求。其轻巧的设计也使其成为长时间观察小动物头部研究的理想选择。 通过不断的改进和优化,研究团队成功开发出世界上最轻、最紧凑的超微型荧光显微镜TINIscope,并取得了显著的研究成果。这一创新技术有望为脑科学研究带来新的突破,并具有广泛的应用前景。 via 标签: #显微镜 频道: @GodlyNews1 投稿: @GodlyNewsBot 微软 2024 开学季促销

封面图片

一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜观察

一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜观察 圆环状光束从具有规则重复结构的物体上反弹产生的散射图案。资料来源:Wang 等人,2023 年,"Optica"(光学)。功能最强大的无透镜成像技术被称为"层析成像",其工作原理是用类似激光的光束扫描样品,收集散射光,然后利用计算机算法重建样品图像。虽然层析成像技术可以观察到许多纳米结构,但这种特殊的显微镜在分析具有非常规则的重复图案的样品时会遇到困难。这是因为在扫描周期性样品时,散射光不会发生变化,因此计算机算法会感到困惑,无法重建良好的图像。面对这一挑战,刚刚毕业的博士研究员王斌和内森-布鲁克斯与 JILA 研究员 Margaret Murnane 和 Henry Kapteyn 合作,开发出一种新方法,利用具有特殊涡旋或甜甜圈形状的短波长光来扫描这些重复表面,从而产生更多不同的衍射图样。这使得研究人员能够利用这种新方法捕捉到高保真的图像重建,他们最近在《光学》(Optica)杂志上发表了这篇论文。这项成果还将在《Optica》杂志的《光学与光子学新闻》(Opticsand Photonics News)2023 年光学 年度要闻中重点介绍。这种新的成像方法对于纳米电子学、光子学和超材料的应用尤其具有影响力。Murnane 解释说:"将可见激光束结构化(或改变其形状)为甜甜圈和其他形状的能力彻底改变了可见光超分辨率显微镜技术。现在,我们有了将这些强大功能应用到更短波长的途径,这非常令人兴奋"。雕刻涡形高次谐波束为了在台式装置中产生类似激光的短波长光束,JILA 小组使用了一种称为高次谐波发生(HHG)的过程。当超高速激光脉冲击中一个原子时,高次谐波发生器会将一个电子拉走,然后将其驱回母体原子重新结合。原子在接触时,会将电子的动能转化为极紫外(EUV)光。如果数以百万计的原子都同步发出极紫外光,那么这些光波就会产生类似激光的明亮极紫外光束。为了给重复图案成像,JILA 的研究人员需要找到一种改变 HHG 光束的方法,这样当 EUV 光束在样品上扫描时,散射光就会发生变化。为了达到这一效果,研究人员将 HHG 光束从圆盘状转变为涡旋状或甜甜圈状,这就是所谓的轨道角动量(OAM)光束。这种不同的形状对于实现周期性样品的无透镜成像至关重要。当科学家们用漩涡状的 HHG 光束照射显微镜时(见附图),会产生更复杂的散射图案,这些图案会随着样品的扫描而变化。这些变化编码了样品重复图案的信息,使算法能够提取精确的图像。除了这一令人兴奋的结果之外,与扫描电子显微镜相比,这种新型涡流束无透镜成像技术对脆弱样品的损伤也更小。由于许多软性材料、塑料和生物样本都很脆弱,因此有一种精确而温和的方法来对它们进行成像是非常关键的。此外,涡流束无透镜成像比扫描电子显微镜更能检测出纳米图案中的缺陷,因为扫描电子显微镜往往会融化脆弱的样品。对于为下一代纳米、能源、光子和量子设备制造图案化材料的科学家来说,这一进步能够在不破坏高周期结构的情况下对其进行高分辨率成像。正如 Kapteyn 所说:"未来,这也有可能以高空间分辨率对微妙的活细胞进行成像"。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人