来自古老地外陨石的稀有尘埃粒子正挑战天体物理模型

来自古老地外陨石的稀有尘埃粒子正挑战天体物理模型 研究人员从ALH 77307中发现了一种地外陨石,其25Mg同位素组成是迄今为止在硅酸盐中测得的最高值(δ25Mg= 3025.1‰ ± 38.3‰)。它的同位素组成对目前的恒星模型提出了挑战,镁、硅和氧的模型显示与超新星(SN)中的形成最为接近,在超新星前阶段发生了氢摄取。原始天体材料中的前极粒保留了整个恒星演化过程和环境变化的记录。然而,由于前极性硅酸盐的平均粒度(150纳米)、对萃取剂的敏感性以及仪器限制等原因,研究这些记录具有一定的挑战性。研究人员首次对来自氢燃烧SN的前极硅酸盐进行了详细的地球化学研究,研究以三维的方式进行,没有对分析体积造成任何影响,而且空间分辨率达到了前所未有的水平(<1 nm),这对于约束最近提出的恒星环境中发生的物理和化学过程至关重要。根据研究结果推断:(i) 在冷凝过程中的压力和温度条件下,地外陨石晶格兼容的重元素是在一个贫乏的环境中冷凝;或 (ii) 在前SN阶段接近尾声时的有限混合期间,或在坍缩过程中,不同气体成分的局部区域迅速形成。原子探针层析成像技术是一种将样品分解为原子结构并进行三维重建的仪器,可以精确地获得样品中每个原子的 x、y、z 坐标。它可以测量元素周期表中除惰性气体之外的所有离子,空间分辨率为亚纳米级,探测极限为 10 ppm。该仪器是该领域的新产品,Nevill 博士是首批将其用于行星科学的人员之一。对氢燃烧超新星形成的粒子进行原子探测分析。这张三维"原子地图"显示了在样本中探测到的两种镁同位素,粒子中的硅原子和氧原子显示为较小的球体。这项工作依赖于原子探测器对镁的单个同位素进行计数的能力,从而可以测量同位素比。图片来源:科廷大学地球科学原子探针设施 David SaxeyNevill博士解释说:"结果简直出乎意料,因为这是迄今为止在前olar硅酸盐晶粒中发现的最高镁异常。这些结果对当前的天体物理模型提出了挑战,表明在我们尚未完全了解的恒星环境中正在发生一些过程。"这种极端的镁元素异常目前只能用最近发现的一种恒星氢燃烧超新星来解释。作为首次对来自氢燃烧超新星的前极粒进行的已知详细化学研究,该结果揭开了人们对氢燃烧超新星及其演化条件的新认识。此外,这一重大发现标志着首次使用原子探针断层扫描技术对太阳系前硅酸盐进行研究,这是地球化学和地质年代研究中空间分辨率最高的技术。原子探针扩大了每个前极晶粒体积可测量同位素的范围,达到了帮助我们了解这些恒星如何形成所必需的新的详细程度。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

中国科大揭示地球氮元素起源与早期演化之谜

中国科大揭示地球氮元素起源与早期演化之谜 氮是地球上生命的基本组成元素之一,广泛存在于众多有机分子之中。尽管氮对生命至关重要,但与地球初始增生物质相比,当前硅酸盐地球(包括大气、地壳和地幔)的氮含量相对较低,大约只有2ppm(百万分之二)。深入研究地球中氮的增生演化历史对认识地球生命相关元素的起源及宜居性演变具有重要意义。目前,学术界主要有两种关于地球挥发份增生模型。第一种模型,即“后期增生模型(Late veneer)”,认为形成地球的初始增生物质几乎不含挥发份,包括氮,而硅酸盐地球目前所具有的挥发份丰度主要是在增生晚期通过加入少量富含挥发份物质(如碳质球粒陨石)形成的。第二种模型,即“早期演化模型”,则认为地球的初始增生物质原本就富含挥发份,地球所经历的一系列演化过程导致了目前硅酸盐地球相对于初始组分亏损挥发份。氮有两种稳定同位素,即14N和15N。氮同位素可用于示踪地球挥发份在行星增生过程中的演化历史,为研究类地行星挥发份的起源和演化提供了一种关键研究手段。然而,要有效利用这一工具,首先必须了解行星早期演化阶段中氮同位素的分馏机制。王文忠特任教授采用第一性原理计算方法,研究了星云物质凝聚形成星胚过程中的氮同位素分馏,包括熔融挥发和核幔分异两个阶段。研究发现,在早期太阳系星云中氢气尚未完全散失的条件下,熔融挥发使得星胚富集14N,而核幔分异则导致15N在硅酸盐熔体中富集。结合第一性原理计算结果和实际观测数据,研究团队发现早期星胚演化过程并不足以解释当前硅酸盐地球的氮同位素组成,必须在增生晚期加入一定量的富含挥发性成分的物质,如碳质球粒陨石,以解释观测到的氮同位素特征。因此,硅酸盐地球中的氮丰度是早期星胚演化和晚期增生阶段共同作用的结果。值得注意的是,尽管晚期增生对硅酸盐地球的氮丰度具有显著影响,但由于加入的富含挥发份物质的质量极低,其对硅酸盐地球中其他挥发份丰度的贡献十分有限。论文第一和通讯作者为王文忠特任教授,合作者包括英国伦敦大学学院John Brodholt教授、美国卡耐基科学研究所Michael Walter研究员和田纳西大学诺克斯维尔分校黄士春教授。近年来,王文忠特任教授领导的研究团队专注于类地行星挥发份的起源及早期演化,运用多种同位素作为示踪工具,结合第一性原理计算与观测数据,揭示了地球在吸积初始阶段便显著增生了大量挥发性元素,星胚的演化过程对地球的挥发份储库进行了重塑,相关论文发表在《NatureGeoscience》和《Science Advances》(Wang et al., 2021, NG, 2023, SA)。该研究对现有理论模型进行了重要的补充,重新评估了“后期增生”对地球氮丰度的影响。这一系列工作揭示了“早期演化”和“后期增生”两个阶段对地球挥发份的综合影响,为理解地球挥发性成分的演化历史提供了新的视角。图 早期星胚熔融挥发和晚期增生对挥发份的影响论文链接: ... PC版: 手机版:

封面图片

罕见的ONe新星爆炸塑造了生命的基石

罕见的ONe新星爆炸塑造了生命的基石 研究人员提出,ONe 新星(富含氧、氖和镁的白矮星的恒星爆炸)是磷的重要来源,而磷对地球上的生命至关重要。该模型预测磷的丰度在大约80亿年前达到顶峰,与太阳系的形成时间一致,并建议将氯的增强作为未来的观测目标。资料来源:NAOJ宇宙大爆炸之后,宇宙中几乎所有的物质都由氢组成。其他元素是后来通过恒星内部的核反应或恒星在被称为新星或超新星的事件中爆炸时形成的。但是,恒星的种类繁多,爆炸的方式也多种多样。天文学家们仍在努力弄清哪些过程对我们在宇宙中看到的元素丰度的形成很重要。在这项研究中,西澳大利亚大学的Kenji Bekki和日本国家天文台的Takuji Tsujimoto提出了一个基于氧氖新星(简称"ONe新星")的新模型来解释磷的丰度。当物质堆积在富含氧-氖-镁的白矮星表面,并被加热到点燃爆炸性失控核聚变时,就会发生"氖新星"。该模型预测,ONe新星将释放出大量的磷,而新星的数量将取决于恒星的化学成分,特别是铁含量。研究人员估计,ONe新星的发生率在大约80亿年前达到顶峰,这意味着当太阳系在大约46亿年前开始形成时,磷就已经很容易获得了。根据该模型的预测,新星铈将产生类似于磷增强的氯增强。目前还没有足够的氯气观测数据来证实这一点,但它为检验新星铈模型的有效性提供了一个可检验的假设。未来对银河系外围恒星的观测将提供所需的数据,以确定所预测的铁依赖性和氯增强是否符合实际情况,或者是否需要重新考虑。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

超新星向地球喷射放射性碎片是一种令人惊讶的常见宇宙现象

超新星向地球喷射放射性碎片是一种令人惊讶的常见宇宙现象 钱德拉 X 射线天文台和哈勃太空望远镜分别从 X 射线和光学角度观察到的超新星产生的巨大、不断膨胀的碎片云。X 射线NASA/CXC/GSFC/B.J. Williams 等人;光学:NASA/ESA/STSCI尽管如此,超新星还是要走很长一段路,而且超新星相当罕见,在像银河系这样的大星系中,大约每百年才会发生一次。因此,任何一颗正在爆炸的恒星都很有可能离地球非常遥远,而且只会上演一场漂亮的光影秀(如果我们能透过笼罩在银河系部分地区的厚厚尘埃看到它的话)。但请注意我说的"任何一颗爆炸的恒星"。相对罕见事件的特点是,只要有足够的时间,它们就会发生。我们还是得从宇宙尺度来考虑:一般来说,一个世纪一颗超新星,也许就是人类一生一次。但是星系(和地球)已经存在了数十亿年。这已经足够长的时间,足以让"近在咫尺"的超新星成为必然。毕竟,我们有令人信服的物理证据证明,在我们星球的过去就发生过这种情况。2016年,两组天文学家在《自然》杂志上发表了两篇论文,结果令人震惊:他们在深海海底两层不同的古代沉积物中发现了高含量的铁60。每一层富含铁60的沉积层都标志着在过去的900万年里,地球曾遭受过附近一颗超新星的轰击。铁 60 是铁的一种放射性同位素,它衰变成钴 60 的半衰期为 260 万年。这意味着,如果从一个纯铁 60 样本开始,260 万年后,其中一半将衰变为钴 60。再过 260 万年,原始样本中剩余的铁 60 又将衰变一半,只剩下最初铁 60 数量的四分之一,依此类推。科学家可以利用这种衰变速度,相对准确地测量出铁 60 的制造时间。这反过来又很重要,因为我们只知道在一个天然的地方可以形成这种同位素:超新星的核火焰中。在第一篇《自然》论文中,科学家们研究了沉积在海底的星际尘埃,发现沉积物中铁60的含量在750万年前和250万年前出现了两个宽广的峰值(在2016年的另一项研究中,另一个科学家小组也在海底细菌化石中发现了铁60,与约250万年前的峰值一致)。奇怪的是,在《自然》杂志的研究中,铁 60 的增加并不像你所期望的那样,是由一颗超新星引起的尖峰。相反,在每个案例中,铁 60 的增加都分散在一百万年以上的时间里,这意味着每个事件都是由多个超新星造成的。研究人员的模型显示,这些物质在坠落到地球之前,在星际空间中航行了大约20万年。在第二篇《自然》(Nature )论文中,隶属于第一个研究小组的科学家们利用这些数据估算出了超新星在太空中的位置。铁 60 是大质量恒星爆炸时产生的。从宇宙学的角度来说,这种恒星赋予了"从摇篮到坟墓"新的含义,因为它们诞生于巨大的气体云中,几百万年后,当它们还被包裹在气体云中时就会死去。该杂志的第二项研究指出,这两颗超新星最有可能的罪魁祸首是天蝎座-半人马座星团,这是一个由年轻恒星组成的松散星团,目前距离地球约 390 至 470 光年。其中许多恒星的质量都相当大,正是那种在生命末期爆炸的恒星。此外,我们的太阳位于所谓的"本地气泡"(Local Bubble)中间附近,这是由漂浮在银河系恒星之间的星际物质形成的一个巨大空腔。这个气泡是由大约1400万年前天蝎座-半人马座联合体中的超新星膨胀而成的,可能需要14到20颗这样的爆炸恒星的努力。这一时间轴与在海洋沉积物中观测到的铁 60 峰值非常吻合。科学家们发现,最近的峰值可能是两颗超新星造成的,一颗在 230 万年前爆炸,另一颗在 150 万年前爆炸。这两颗恒星爆炸时距离地球约 300 光年。沉积物中铁 60 的含量实际上很少,每克物质中大约有 10 万个原子。(要知道,一克沉积物中大约有1022个原子,所以铁 60 只占极小的一部分!)。但令人吃惊的是,距离我们四万亿千米的恒星爆炸产生的碎片竟然也存在。还要记住,铁 60 只占超新星喷出物质的一小部分。其余的喷出物质超过1080亿公吨,所以很多也以每小时数千万公里的速度向外加速。随着物质向远离爆炸点的方向膨胀,它们会变得越来越稀薄,所以当附近一颗超新星的喷出物到达地球时,也许有几百公吨的物质会在一段时间内降落在我们的星球上。这听起来似乎很多,但每天大约有同样数量的陨石撞入我们的大气层。因此,超新星并不会明显增加地球的重量,也不会以这种方式给我们带来巨大的危险。尽管如此,我们还是得到了惊人的启示:每隔几百万年,就会有一颗超新星在离地球足够近的地方爆炸,使我们受到放射性碎片的袭击。这意味着,在我们地球的生命周期中,我们已经被恒星爆炸产生的灰烬击中了成千上万次,其中一些物质很可能已经接近到足以造成我在上一篇文章中描述的一些全球性破坏的程度。就最近已知的邻近超新星的具体情况而言,虽然当时人类并不存在,但我们的几位近祖,如澳人猿(Australopithecus afarensis )却存在。其中一个绰号"露西"的物种在大约 300 万年前来到地球。她可能错过了那次特殊的事件,但如果是这样的话,她的后代可能会仰望天空,并对出现在那里的令人惊讶的亮光感到好奇。它的亮度足以在白天看到,在夜晚投下阴影。数百万年后的今天,我们仍在思考同样的问题。不同的是,现在我们有了工具来研究和理解这些宇宙爆炸对我们星球的深远影响。 ... PC版: 手机版:

封面图片

在AI帮助下 天体物理学家揭开重元素的宇宙起源

在AI帮助下 天体物理学家揭开重元素的宇宙起源 理论物理学家马修-芒鲍尔(Matthew Mumpower)说:"自然界中可能存在成千上万个尚未测量的原子核。机器学习算法非常强大,因为它们可以在数据中发现复杂的相关性,而理论核物理模型却很难有效地产生这种结果。这些相关性可以为科学家提供有关'缺失物理'的信息,反过来又可以用来加强原子质量的现代核模型。"模拟快速中子俘获过程最近,Mumpower 和他的同事(包括前洛斯阿拉莫斯暑期学生李梦柯和博士后 Trevor Sprouse)在《物理快报 B》上发表了一篇论文,描述了用基于物理学的机器学习质量模型模拟一个重要的天体物理过程。r过程,即快速中子捕获过程,是发生在极端环境中的天体物理过程,如中子星碰撞产生的环境。重元素可能来自这种"核合成"。事实上,宇宙中一半的重同位素直至铋以及所有的钍和铀都可能是由这种"核合成"过程产生的。洛斯阿拉莫斯模拟的两颗中子星碰撞后的吸积盘。这一事件同时产生了轻元素(蓝色)和重元素(红色)。资料来源:洛斯阿拉莫斯国家实验室然而,对这一过程进行建模需要对原子质量进行理论预测,而目前的实验还无法达到这一要求。研究小组采用物理信息机器学习方法,从原子质量评估(Atomic Mass Evaluation)这一大型质量数据库中随机选择,训练出一个模型。接下来,研究人员利用这些预测的质量来模拟 r 过程。该模型使研究小组首次利用机器学习预测的质量模拟了r过程的核合成这是一项重大创举,因为机器学习预测通常会在外推时崩溃。Mumpower说:"我们已经证明,机器学习原子质量可以为我们在实验数据之外的预测打开大门。关键的一点是,我们告诉模型要遵守物理定律。通过这样做,我们就能进行基于物理学的推断。我们的结果与当代理论模型不相上下,甚至更胜一筹,并且可以在获得新数据时立即更新。"研究核结构r过程模拟是研究团队将机器学习应用于核结构相关研究的补充。在最近发表在《物理评论 C》上的一篇被选为"编辑建议"的文章中,研究小组利用机器学习算法重现了具有量化不确定性的核结合能;也就是说,他们能够确定将原子核分离成质子和中子所需的能量,以及每个预测的相关误差条。因此,该算法提供的信息需要大量的计算时间和资源才能从当前的核建模中获得。在相关工作中,研究小组利用他们的机器学习模型将精确的实验数据与理论知识结合起来。这些结果激发了新的稀有同位素束设施的一些首批实验活动,该设施旨在扩大核图的已知区域并揭示重元素的起源。编译自:ScitechDaily ... PC版: 手机版:

封面图片

史上最亮伽玛射线暴GRB 221009A正在挑战元素形成理论

史上最亮伽玛射线暴GRB 221009A正在挑战元素形成理论 艺术家绘制的 GRB 221009A 可视图,显示了产生 GRB 的狭长相对论喷流从中央黑洞喷出以及通过超新星爆炸喷出的原始恒星不断膨胀的残骸。西北大学博士后研究员彼得-布兰查德(Peter Blanchard)和他的团队利用詹姆斯-韦伯太空望远镜首次探测到了这颗超新星,证实了GRB 221009A是一颗大质量恒星坍缩的结果。该研究的合著者还发现,该事件发生在其宿主星系的密集恒星形成区域,如背景星云所描绘的那样。图片来源:Aaron M. Geller / Northwestern / CIERA / IT Research Computing and Data Services研究人员推测,铂和金等重元素的证据可能就存在于这颗新发现的超新星中。然而,广泛的搜索并没有发现这类元素的特征。宇宙中重元素的起源仍然是天文学最大的悬而未决的问题之一。这项研究成果于4月12日发表在《自然-天文学》杂志上。西北大学的彼得-布兰查德(Peter Blanchard)是这项研究的负责人,他说:"当我们确认GRB是由一颗大质量恒星的坍缩产生的时候,我们就有机会检验宇宙中一些最重元素是如何形成的。我们没有看到这些重元素的特征,这表明像B.O.A.T.这样能量极高的GRB不会产生这些元素。这并不意味着所有的GRB都不会产生这些元素,但这是我们继续了解这些重元素来源的一个关键信息。JWST未来的观测将确定B.O.A.T.的'正常'表兄弟是否会产生这些元素。"布兰查德是西北大学天体物理学跨学科探索与研究中心(CIERA)的博士后,研究超光速超新星和GRB。这项研究的共同作者来自哈佛大学天体物理学中心和史密森尼天文台、犹他大学、宾夕法尼亚州立大学、加州大学伯克利分校、荷兰 Radbound 大学、太空望远镜科学研究所、亚利桑那大学/斯图尔特天文台、加州大学圣巴巴拉分校、哥伦比亚大学、Flatiron 研究所、格赖夫斯瓦尔德大学和圭尔夫大学。第二作者、哈佛大学天体物理学中心(Center for Astrophysics | Harvard & Smithsonian)的阿什利-维拉尔(Ashley Villar)说:"这一事件尤其令人兴奋,因为有人曾假设,像B.O.A.T.这样的高能伽马射线暴可能会产生大量的重元素,比如金和铂。"如果他们是正确的,B.O.A.T.应该是一座金矿。令人震惊的是,我们并没有看到这些重元素的任何证据。"B.O.A.T. 的诞生2022年10月9日,当它的光芒照耀地球时,B.O.A.T.是如此明亮,以至于世界上大多数伽马射线探测器都被它的光芒所淹没。这次强烈的爆炸发生在距离地球约 20 亿光年远的人马座方向,持续了几百秒钟。当天文学家们争先恐后地观测这一令人难以置信的明亮现象的起源时,他们立刻被一种敬畏感所击中。西北大学温伯格艺术与科学学院物理学和天文学副教授、CIERA成员方文辉当时说:"只要我们能够探测到GRB,那么毫无疑问,这个GRB是我们目睹过的最亮的GRB,亮度达到了10倍或更多。"布兰查德说:"这次事件产生了一些专门用于探测伽马射线的卫星所记录到的最高能量的光子。这是地球每一万年才能看到一次的事件。我们很幸运生活在这样一个时代,我们拥有探测宇宙中发生的这些爆发的技术。能够观测到 B.O.A.T.这样罕见的天文现象,并努力了解这一特殊事件背后的物理学原理,实在是太令人兴奋了。"一颗"正常"超新星布兰查德、维拉尔和他们的团队并没有立即对这一事件进行观测,而是希望在它的后期阶段对其进行观测。在最初探测到伽马射线暴约六个月后,布兰查德和维拉尔利用 JWST 对其后期进行了观测。布兰查德说:"GRB是如此明亮,以至于在爆发后的最初几周和几个月里,它掩盖了任何潜在的超新星特征。在这些时间里,GRB的所谓余辉就像一辆汽车的前大灯直射向你,让你无法看到汽车本身。因此,我们必须等待余辉明显减弱,才有机会看到超新星。"维拉尔说:"我们很幸运,因为 JWST 刚刚发射,可以进行这些观测。银河恰好位于 B.O.A.T. 的前方,它的尘埃挡住了我们通常能看到的所有蓝光。JWST 可以穿透这些尘埃,让我们看到令人难以置信的红外线。"研究小组利用 JWST 的近红外摄谱仪发现了超新星中钙和氧等元素的典型特征。令人惊讶的是,它并不特别明亮就像它所伴随的亮度惊人的GRB一样。布兰查德说:"它并不比以前的超新星更亮。与其他能量较低的GRB相关的超新星相比,它看起来相当正常。你可能会认为,产生高能量和高亮度 GRB 的同一颗坍缩恒星也会产生高能量和高亮度的超新星。但事实证明并非如此。我们看到的这个GRB亮度极高,但却是一颗普通的超新星。"失踪:重元素在首次确认了超新星的存在之后,布兰查德和他的合作者接着寻找其中重元素的证据。目前,天体物理学家对宇宙中能够产生比铁更重的元素的所有机制的了解还不全面。产生重元素的主要机制快速中子俘获过程需要高浓度的中子。迄今为止,天体物理学家只在两颗中子星的合并中证实了通过这一过程产生重元素,激光干涉引力波天文台(LIGO)在2017年探测到了这一碰撞。但科学家们说,一定还有其他方法可以产生这些难以捉摸的物质。宇宙中的重元素实在太多了,而中子星合并却太少。"很可能还有另一个来源,"布兰查德说。"双中子星合并需要很长的时间。双星系统中的两颗恒星首先必须爆炸,留下中子星。然后,这两颗中子星需要数十亿年的时间慢慢靠近,最终合并。但是,对非常古老恒星的观测表明,在大多数双中子星来得及合并之前,宇宙的某些部分就已经富含重金属了。这为我们指出了另一种渠道。"天体物理学家推测,重元素也可能是由快速旋转的大质量恒星坍缩产生的,而这种恒星正是产生B.O.A.T.的恒星。利用JWST获得的红外光谱,布兰查德研究了超新星的内层,重元素应该是在这里形成的。"恒星的爆炸物质在早期是不透明的,所以你只能看到外层,"布兰查德说。"但一旦它膨胀并冷却,就会变得透明。然后你就能看到来自超新星内层的光子了。此外,不同元素吸收和发射的光子波长不同,这取决于它们的原子结构,因此每种元素都有独特的光谱特征,因此,通过观察天体的光谱,我们可以知道天体中含有哪些元素。在检查B.O.A.T.的光谱时,我们没有看到任何重元素的特征,这表明像GRB 221009A这样的极端事件并不是主要来源。在我们继续尝试确定最重元素形成的地方时,这是至关重要的信息。"为何如此明亮?为了将超新星的光线与它之前的明亮余辉的光线区分开来,研究人员将 JWST 的数据与智利阿塔卡马大毫米波/亚毫米波阵列(ALMA)的观测数据进行了配对。"即使在爆发被发现几个月后,余辉的亮度也足以在JWST光谱中贡献大量的光,"犹他大学物理和天文学助理教授、该研究的合著者Tanmoy Laskar说。"结合两台望远镜的数据,有助于我们准确测量 JWST 观测时余辉的亮度,使我们能够仔细提取超新星的光谱"。虽然天体物理学家们还没有发现一颗"普通"超新星和破纪录的 GRB 是如何由同一颗坍缩恒星产生的,但拉斯卡尔说,这可能与相对论射流的形状和结构有关。当快速旋转的大质量恒星坍缩成黑洞时,它们会产生物质喷流,以接近光速的速度喷出。如果这些喷流很窄,就会产生更集中、更明亮的光束。拉斯卡尔说:"这就像把手电筒的光束聚焦到一个狭窄的柱子上,而不是把宽大的光束冲过整面墙。事实上,这是迄今为止看到的伽马射线暴中最窄的射流之一,这给了我们一个提示,为什么余辉会如此明亮。可能还有其他因素,研究人员将在未来几年研究这个问题。"未来对B.O.A.T.所在星系的研究也可能提供更多线索。 PC版: 手机版:

封面图片

哈勃的震撼视角窥探变革中的RCW 7恒星工厂

哈勃的震撼视角窥探变革中的RCW 7恒星工厂 这幅哈勃太空望远镜拍摄的 RCW 7 星云展示了分子云向 H II 区域的转变过程,其标志是大质量原恒星的出现。这些恒星发出的紫外线和恒星风塑造了星云,哈勃用近红外线捕捉到了这一过程,揭示了恒星的生命周期及其对周围云的影响。图片来源:欧空局/哈勃和美国国家航空航天局,J. Tan(查尔默斯大学和弗吉尼亚大学)星云是充满形成新恒星所需原材料的空间区域。在万有引力的作用下,这些分子云的一部分会发生坍缩,直到凝聚成原生恒星,周围是由剩余气体和尘埃组成的旋转圆盘。就 RCW 7 而言,在这里形成的原恒星质量特别大,会释放出强烈的电离辐射和猛烈的恒星风,将其转化为所谓的 H II 区域。H II 区域充满了氢离子H I 指的是正常的氢原子,H II 指的是失去电子的氢。来自大质量原恒星的紫外线辐射激发了氢,使其发光,从而使这个星云发出柔和的粉红色光芒。在这里,哈勃正在研究一颗名为 IRAS 07299-1651 的特殊大质量原恒星双星,它仍处于星云顶部卷曲云层中的发光气体茧中。为了曝光这颗恒星和它的兄弟姐妹们,这张照片是用广角相机 3 (WFC3) 以近红外光拍摄的。这里的大质量原恒星在紫外线下是最亮的,但它们会发出大量的红外线,这些红外线可以穿过它们周围的大部分气体和尘埃,被哈勃看到。这张图片中许多其他看起来更大的恒星并不是星云的一部分,它们位于星云和太阳系之间。H II 区域的形成标志着分子云终结的开始。在短短的几百万年里,来自大质量恒星的辐射和风会逐渐驱散气体当质量最大的恒星在超新星爆炸中走到生命的尽头时,情况会更加严重。在这个星云中,只有一小部分气体会融入新的恒星,其余的则会散布到整个星系中,最终形成新的分子云。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人