来自古老地外陨石的稀有尘埃粒子正挑战天体物理模型

来自古老地外陨石的稀有尘埃粒子正挑战天体物理模型 研究人员从ALH 77307中发现了一种地外陨石,其25Mg同位素组成是迄今为止在硅酸盐中测得的最高值(δ25Mg= 3025.1‰ ± 38.3‰)。它的同位素组成对目前的恒星模型提出了挑战,镁、硅和氧的模型显示与超新星(SN)中的形成最为接近,在超新星前阶段发生了氢摄取。原始天体材料中的前极粒保留了整个恒星演化过程和环境变化的记录。然而,由于前极性硅酸盐的平均粒度(150纳米)、对萃取剂的敏感性以及仪器限制等原因,研究这些记录具有一定的挑战性。研究人员首次对来自氢燃烧SN的前极硅酸盐进行了详细的地球化学研究,研究以三维的方式进行,没有对分析体积造成任何影响,而且空间分辨率达到了前所未有的水平(<1 nm),这对于约束最近提出的恒星环境中发生的物理和化学过程至关重要。根据研究结果推断:(i) 在冷凝过程中的压力和温度条件下,地外陨石晶格兼容的重元素是在一个贫乏的环境中冷凝;或 (ii) 在前SN阶段接近尾声时的有限混合期间,或在坍缩过程中,不同气体成分的局部区域迅速形成。原子探针层析成像技术是一种将样品分解为原子结构并进行三维重建的仪器,可以精确地获得样品中每个原子的 x、y、z 坐标。它可以测量元素周期表中除惰性气体之外的所有离子,空间分辨率为亚纳米级,探测极限为 10 ppm。该仪器是该领域的新产品,Nevill 博士是首批将其用于行星科学的人员之一。对氢燃烧超新星形成的粒子进行原子探测分析。这张三维"原子地图"显示了在样本中探测到的两种镁同位素,粒子中的硅原子和氧原子显示为较小的球体。这项工作依赖于原子探测器对镁的单个同位素进行计数的能力,从而可以测量同位素比。图片来源:科廷大学地球科学原子探针设施 David SaxeyNevill博士解释说:"结果简直出乎意料,因为这是迄今为止在前olar硅酸盐晶粒中发现的最高镁异常。这些结果对当前的天体物理模型提出了挑战,表明在我们尚未完全了解的恒星环境中正在发生一些过程。"这种极端的镁元素异常目前只能用最近发现的一种恒星氢燃烧超新星来解释。作为首次对来自氢燃烧超新星的前极粒进行的已知详细化学研究,该结果揭开了人们对氢燃烧超新星及其演化条件的新认识。此外,这一重大发现标志着首次使用原子探针断层扫描技术对太阳系前硅酸盐进行研究,这是地球化学和地质年代研究中空间分辨率最高的技术。原子探针扩大了每个前极晶粒体积可测量同位素的范围,达到了帮助我们了解这些恒星如何形成所必需的新的详细程度。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

罕见的ONe新星爆炸塑造了生命的基石

罕见的ONe新星爆炸塑造了生命的基石 研究人员提出,ONe 新星(富含氧、氖和镁的白矮星的恒星爆炸)是磷的重要来源,而磷对地球上的生命至关重要。该模型预测磷的丰度在大约80亿年前达到顶峰,与太阳系的形成时间一致,并建议将氯的增强作为未来的观测目标。资料来源:NAOJ宇宙大爆炸之后,宇宙中几乎所有的物质都由氢组成。其他元素是后来通过恒星内部的核反应或恒星在被称为新星或超新星的事件中爆炸时形成的。但是,恒星的种类繁多,爆炸的方式也多种多样。天文学家们仍在努力弄清哪些过程对我们在宇宙中看到的元素丰度的形成很重要。在这项研究中,西澳大利亚大学的Kenji Bekki和日本国家天文台的Takuji Tsujimoto提出了一个基于氧氖新星(简称"ONe新星")的新模型来解释磷的丰度。当物质堆积在富含氧-氖-镁的白矮星表面,并被加热到点燃爆炸性失控核聚变时,就会发生"氖新星"。该模型预测,ONe新星将释放出大量的磷,而新星的数量将取决于恒星的化学成分,特别是铁含量。研究人员估计,ONe新星的发生率在大约80亿年前达到顶峰,这意味着当太阳系在大约46亿年前开始形成时,磷就已经很容易获得了。根据该模型的预测,新星铈将产生类似于磷增强的氯增强。目前还没有足够的氯气观测数据来证实这一点,但它为检验新星铈模型的有效性提供了一个可检验的假设。未来对银河系外围恒星的观测将提供所需的数据,以确定所预测的铁依赖性和氯增强是否符合实际情况,或者是否需要重新考虑。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

超新星向地球喷射放射性碎片是一种令人惊讶的常见宇宙现象

超新星向地球喷射放射性碎片是一种令人惊讶的常见宇宙现象 钱德拉 X 射线天文台和哈勃太空望远镜分别从 X 射线和光学角度观察到的超新星产生的巨大、不断膨胀的碎片云。X 射线NASA/CXC/GSFC/B.J. Williams 等人;光学:NASA/ESA/STSCI尽管如此,超新星还是要走很长一段路,而且超新星相当罕见,在像银河系这样的大星系中,大约每百年才会发生一次。因此,任何一颗正在爆炸的恒星都很有可能离地球非常遥远,而且只会上演一场漂亮的光影秀(如果我们能透过笼罩在银河系部分地区的厚厚尘埃看到它的话)。但请注意我说的"任何一颗爆炸的恒星"。相对罕见事件的特点是,只要有足够的时间,它们就会发生。我们还是得从宇宙尺度来考虑:一般来说,一个世纪一颗超新星,也许就是人类一生一次。但是星系(和地球)已经存在了数十亿年。这已经足够长的时间,足以让"近在咫尺"的超新星成为必然。毕竟,我们有令人信服的物理证据证明,在我们星球的过去就发生过这种情况。2016年,两组天文学家在《自然》杂志上发表了两篇论文,结果令人震惊:他们在深海海底两层不同的古代沉积物中发现了高含量的铁60。每一层富含铁60的沉积层都标志着在过去的900万年里,地球曾遭受过附近一颗超新星的轰击。铁 60 是铁的一种放射性同位素,它衰变成钴 60 的半衰期为 260 万年。这意味着,如果从一个纯铁 60 样本开始,260 万年后,其中一半将衰变为钴 60。再过 260 万年,原始样本中剩余的铁 60 又将衰变一半,只剩下最初铁 60 数量的四分之一,依此类推。科学家可以利用这种衰变速度,相对准确地测量出铁 60 的制造时间。这反过来又很重要,因为我们只知道在一个天然的地方可以形成这种同位素:超新星的核火焰中。在第一篇《自然》论文中,科学家们研究了沉积在海底的星际尘埃,发现沉积物中铁60的含量在750万年前和250万年前出现了两个宽广的峰值(在2016年的另一项研究中,另一个科学家小组也在海底细菌化石中发现了铁60,与约250万年前的峰值一致)。奇怪的是,在《自然》杂志的研究中,铁 60 的增加并不像你所期望的那样,是由一颗超新星引起的尖峰。相反,在每个案例中,铁 60 的增加都分散在一百万年以上的时间里,这意味着每个事件都是由多个超新星造成的。研究人员的模型显示,这些物质在坠落到地球之前,在星际空间中航行了大约20万年。在第二篇《自然》(Nature )论文中,隶属于第一个研究小组的科学家们利用这些数据估算出了超新星在太空中的位置。铁 60 是大质量恒星爆炸时产生的。从宇宙学的角度来说,这种恒星赋予了"从摇篮到坟墓"新的含义,因为它们诞生于巨大的气体云中,几百万年后,当它们还被包裹在气体云中时就会死去。该杂志的第二项研究指出,这两颗超新星最有可能的罪魁祸首是天蝎座-半人马座星团,这是一个由年轻恒星组成的松散星团,目前距离地球约 390 至 470 光年。其中许多恒星的质量都相当大,正是那种在生命末期爆炸的恒星。此外,我们的太阳位于所谓的"本地气泡"(Local Bubble)中间附近,这是由漂浮在银河系恒星之间的星际物质形成的一个巨大空腔。这个气泡是由大约1400万年前天蝎座-半人马座联合体中的超新星膨胀而成的,可能需要14到20颗这样的爆炸恒星的努力。这一时间轴与在海洋沉积物中观测到的铁 60 峰值非常吻合。科学家们发现,最近的峰值可能是两颗超新星造成的,一颗在 230 万年前爆炸,另一颗在 150 万年前爆炸。这两颗恒星爆炸时距离地球约 300 光年。沉积物中铁 60 的含量实际上很少,每克物质中大约有 10 万个原子。(要知道,一克沉积物中大约有1022个原子,所以铁 60 只占极小的一部分!)。但令人吃惊的是,距离我们四万亿千米的恒星爆炸产生的碎片竟然也存在。还要记住,铁 60 只占超新星喷出物质的一小部分。其余的喷出物质超过1080亿公吨,所以很多也以每小时数千万公里的速度向外加速。随着物质向远离爆炸点的方向膨胀,它们会变得越来越稀薄,所以当附近一颗超新星的喷出物到达地球时,也许有几百公吨的物质会在一段时间内降落在我们的星球上。这听起来似乎很多,但每天大约有同样数量的陨石撞入我们的大气层。因此,超新星并不会明显增加地球的重量,也不会以这种方式给我们带来巨大的危险。尽管如此,我们还是得到了惊人的启示:每隔几百万年,就会有一颗超新星在离地球足够近的地方爆炸,使我们受到放射性碎片的袭击。这意味着,在我们地球的生命周期中,我们已经被恒星爆炸产生的灰烬击中了成千上万次,其中一些物质很可能已经接近到足以造成我在上一篇文章中描述的一些全球性破坏的程度。就最近已知的邻近超新星的具体情况而言,虽然当时人类并不存在,但我们的几位近祖,如澳人猿(Australopithecus afarensis )却存在。其中一个绰号"露西"的物种在大约 300 万年前来到地球。她可能错过了那次特殊的事件,但如果是这样的话,她的后代可能会仰望天空,并对出现在那里的令人惊讶的亮光感到好奇。它的亮度足以在白天看到,在夜晚投下阴影。数百万年后的今天,我们仍在思考同样的问题。不同的是,现在我们有了工具来研究和理解这些宇宙爆炸对我们星球的深远影响。 ... PC版: 手机版:

封面图片

飞镖盘还是甜甜圈?铁陨石揭示太阳系雏形

飞镖盘还是甜甜圈?铁陨石揭示太阳系雏形 "铁陨石是隐藏的宝石。我们对铁陨石了解得越多,它们就越能揭开太阳系诞生之谜,"加州大学洛杉矶分校行星科学家张必东说。图片来源:加州大学洛杉矶分校陨石展厅"幸运的是,太空中降下了一些线索在太阳系历史早期形成并穿过地球大气层的天体碎片,即陨石。陨石的成分讲述了太阳系诞生的故事,但这些故事往往提出了更多的问题,而不是答案。美国加州大学洛杉矶分校和约翰-霍普金斯大学应用物理实验室的行星科学家小组在《美国国家科学院院刊》上发表的一篇论文中报告说,铱和铂等在高温下凝结的难熔金属,在寒冷且远离太阳的外盘形成的陨石中含量更高。这些金属应该是在靠近太阳的地方形成的,那里的温度要高得多。是否有一条途径将这些金属从内盘转移到外盘?圆环状原行星盘 WSB 52。资料来源:Sean Andrews、Jane Huang、Laura Pérez et al.大多数陨石是在太阳系历史的最初几百万年内形成的。有些陨石是行星形成过程中留下的未熔化的颗粒和尘埃的集合体。其他陨石在其母体小行星形成过程中经历了足够的热量而熔化。当这些小行星熔化时,硅酸盐部分和金属部分由于密度不同而分离,就像水和油不能混合一样。如今,大多数小行星都位于火星和木星之间的一条厚厚的带子上。科学家们认为,木星的引力扰乱了这些小行星的运行轨迹,导致许多小行星相互撞击,四分五裂。当这些小行星的碎片落到地球上并被回收时,它们被称为陨石。铁陨石来自最早的小行星的金属内核,比太阳系中任何其他岩石或天体都要古老。铁陨石含有钼同位素,这些同位素指向这些陨石形成的原行星盘的许多不同位置。这使得科学家们能够了解到原行星盘的化学成分在其雏形时期是怎样的。此前利用智利阿塔卡马大型毫米波/亚毫米波阵列进行的研究发现,其他恒星周围有许多类似飞镖盘的同心圆环。这些行星盘(如 HL Tau)的环被物理间隙隔开,因此这种盘不可能提供一条将这些难熔金属从内盘运输到外盘的路线。阿塔卡马大毫米波/亚毫米波阵列拍摄的年轻恒星金牛座 HL 周围的原行星盘图像。资料来源:ALMA (ESO/NAOJ/NRAO), NSF新论文认为,我们的太阳圆盘很可能在一开始就没有环状结构。相反,我们的行星盘看起来更像一个甜甜圈,随着行星盘的迅速膨胀,富含铱和铂金属颗粒的小行星迁移到了行星盘的外部。但这又给研究人员带来了另一个难题。磁盘膨胀后,重力本应将这些金属拉回太阳。但这并没有发生。第一作者、加州大学洛杉矶分校行星科学家张必东(音译)说:"木星形成后,很可能打开了一个物理缺口,将铱和铂金属困在外盘,防止它们落入太阳。这些金属后来融入了在外盘形成的小行星中。这就解释了为什么形成于外盘的陨石碳质软玉和碳质铁陨石的铱和铂含量远远高于它们的内盘陨石。"张和他的合作者以前曾利用铁陨石来重建水在原行星盘中的分布情况。"铁陨石是隐藏的宝石。我们对铁陨石了解得越多,就越能揭开太阳系诞生之谜。编译自/ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人