仿生学启发设计的柔软的毛毛虫机器人利用折纸的力量移动身体

仿生学启发设计的柔软的毛毛虫机器人利用折纸的力量移动身体 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 正如我们最近看到的其他蛇形机器人一样,它(或它的后代)有朝一日可能会被用于搜索被困在灾难现场废墟下的幸存者,甚至可能用于探索其他星球的表面。它的模块化机身由一排磁性连接的分段组成。必要时,这些部分可以相互分离,并作为一个协作"蜂群"四处移动。不过,在大多数应用中,它们还是会像毛毛虫一样连在一起。每个圆柱形部件的 PET(聚对苯二甲酸乙二酯)表皮都采用了克瑞斯林式折纸图案。简而言之,这种折纸图案由多个对角折痕组成,可使圆柱段向下扭转成扁平圆盘状,然后再膨胀成圆柱状。每条折线上都有由液晶弹性体和聚酰亚胺组成的薄"控制条",这两种材料上都覆盖着一条与电源相连的银纳米线。向纳米线网络施加电流会使其发热,进而加热控制条。液晶弹性体条对热量的反应是收缩,而聚酰亚胺条则同时膨胀。这种沿折叠线的不对称组合反应使膜段向下扭曲成圆盘状。当电流关闭时,薄膜又会膨胀成圆柱体。以这种方式依次激活所有区段,机器人就可以向前或向后移动。也就是说,纳米线"加热器"带可以只在片段的一侧激活。这将导致该段仅在这一侧收缩。如果以这种方式触发了相邻的几个节段,Robotopillar 的身体就会向那个方向弯曲和移动。科学家们目前正在努力提高机器人的速度并改进其转向性能。由普林斯顿大学博士后研究员赵拓领导的研究论文最近发表在《美国国家科学院院刊》(PNAS)上。您可以在Vimeo 上观看机器直立人的行动。 ... PC版: 手机版:

相关推荐

封面图片

长得像极了手风琴的折纸机器蛇未来有望参与特殊场合的搜救行动

长得像极了手风琴的折纸机器蛇未来有望参与特殊场合的搜救行动 说到蛇在地面上移动,大多数人可能会联想到爬行动物以水平 S 形模式蠕动身体的样子。但事实上,这种被称为蛇行的运动方式只是蛇类常用的四种运动方式之一。当蛇必须穿过狭窄的缝隙时,左右摆动身体是不可能的。相反,蛇会保持身体笔直,同时从头部到尾部依次收缩和放松一系列肌肉。由于蛇身底部的皮肤比蛇身两侧的皮肤更有弹性,因此每次肌肉收缩时,蛇身底部皮肤的伸展程度都比蛇身两侧的皮肤要大。这就导致底部皮肤反复向前移动(相对于两侧),像轮胎胎面一样紧贴地面,将蛇的身体向前拉。这种运动方式被称为直线运动,新型机器蛇就是利用了这种运动方式。它是由工程学博士生布尔库-塞伊多奥卢和艾哈迈德-拉夫桑贾尼教授领导的团队在南丹麦大学创造的。机器人的身体由轻质复合纺织品连接而成,其中包含世界上最坚固的合成纤维超高分子量聚乙烯(UHMWPE)。这种纺织品像折纸一样经过激光切割和折叠,然后经过热压,使每个部分形成一个波纹管。每个部分的底部都有一个由相同纺织品制成的半透气小袋。一根硅胶管沿着机器人的内侧,将泵送的空气脉冲送入这些小袋,使它们依次膨胀,然后随着空气从小袋中漏出而瘪下去。当小袋反复经历这一过程时,它们就会推动机器人前进。据说,与我们见过的其他蛇形机器人相比,丹麦的蛇形机器人要轻巧得多,制造成本也更低,另外,它的纺织品身体柔软而有弹性,应该能让它更好地挤进狭小的空间。当然,它还能在保持身体笔直的情况下向前移动。目前,研究人员正在努力将气泵安装到机器人的身体上,同时提高机器人的速度,使其能够转向两侧。希望有一天,这种不受约束、自主、装有传感器的机器人可以用于寻找被困在灾难现场废墟下的幸存者,或用于其他蛇形应用。您可以在下面的视频中看到机器人蛇的行动。有关这项研究的论文最近发表在《设备》杂志上。 ... PC版: 手机版:

封面图片

从小鼠细胞中提取的肌肉组织能移动"生物杂交机器人"

从小鼠细胞中提取的肌肉组织能移动"生物杂交机器人" 虽然这些系统具有柔软的外形,但它们的许多部件仍像传统的同类产品一样是刚性的。研究人员正在努力为这些软体机器人引入柔性元件,以创造运动能力。正如麻省理工学院简明扼要地所说,"我们的肌肉是大自然的完美致动器"。不过,该团队的研究并不只是简单地模仿肌肉。该校的研究人员正在使用活体肌肉组织与合成机器人部件结合,制造一种被称为"生物混合"的机器人。麻省理工学院工程学教授里图-拉曼(Ritu Raman)证实了这一过程,并指出:"我们用小鼠细胞构建肌肉组织,然后把肌肉组织放在机器人的骨架上。然后,这些肌肉就充当了机器人的致动器每当肌肉收缩时,机器人就会移动。"肌肉纤维连接到一个被称为"挠曲"的"弹簧状"装置上,该装置是系统的一种骨骼结构。生物肌肉组织很难处理,而且通常难以预测。将其放置在培养皿中,肌肉组织会按预期膨胀和收缩,但不是以可控的方式膨胀和收缩。要在机器人系统中使用,它们必须可靠、可预测和可重复。在这种情况下,就需要使用在一个方向上具有顺应性,而在另一个方向上具有抵抗性的结构。拉曼的团队在马丁-卡尔佩珀教授的麻省理工学院制造实验室找到了解决方案。挠性结构仍需根据机器人的规格进行调整,最终选择了刚度为肌肉组织1/100的结构。拉曼指出:"当肌肉收缩时,所有的力都会转化为该方向的运动。这是一种巨大的放大。"拉曼说,这种肌肉纤维/挠性系统可以应用于各种不同尺寸的机器人,但研究小组的重点是制造超小型机器人,以便有朝一日能在体内进行微创手术。 ... PC版: 手机版:

封面图片

意念控制的仿生腿能让截肢者更顺畅自然地移动

意念控制的仿生腿能让截肢者更顺畅自然地移动 这项研究发表在上个月的《自然医学》(Nature Medicine)杂志上,详细介绍了一种名为"激动-拮抗肌神经接口"(AMI)的开创性外科技术。这是一种新的截肢方法,旨在保留无缝肢体控制所需的神经和肌肉连接。从根本上说,AMI 将假肢与残肢的肌肉重新连接起来,使这对肢体仍能相互"对话",并将重要的位置感传递给大脑。这些肌肉信号由机器人控制器处理,该控制器会决定假肢踝关节的弯曲程度,并计算必要的扭矩和输出功率。研究小组在七名装有动力假肢的 AMI 患者身上测试了这一界面。结果令人大吃一惊AMI 患者能以正常速度漫步,自动适应斜坡和障碍物,甚至能完成更复杂的动作,比如在爬楼梯时将假肢的脚趾指向上方。首席研究员休-赫尔(Hugh Herr)称这是"历史上第一项假肢研究",展示了神经对腿部的完全调控。在这里,神经系统单独驱动自然的生物步态,与任何机器人控制算法无关。从根本上说,AMI欺骗大脑,让它认为假肢只是它直接指挥下的另一个生物肢体。如此有限的神经输入是如何实现全方位运动的呢?研究生莱尼-宋(Lenny Song)说:"只要稍微增加截肢肢体的神经反馈,就能恢复显著的仿生神经可控性,达到让人们直接通过神经控制行走速度、适应不同地形和避开障碍物的程度。"研究人员将 AMI 组与使用相同动力假肢的七名传统截肢者进行了比较。AMI患者在各项指标上都优于他们行走速度更快,动作更流畅,假肢和完好肢体之间的协调性更好。他们甚至可以用正常的力量推离地面。AMI患者也减少了疼痛、肌肉萎缩和其他传统截肢带来的困扰。虽然他们的肢体只能获得约20%的正常神经数据,但这足以让大脑隐藏的生物仿生运动天赋发挥到极致。当然,目前的 AMI 手术仍然是复杂的外科手术。但赫尔的终极愿景是通过将生物系统与意念控制仿生技术相结合来"重建人体"。 ... PC版: 手机版:

封面图片

清华大学研究人员利用仿生学技术开发出FlexRAM液态金属内存

清华大学研究人员利用仿生学技术开发出FlexRAM液态金属内存 即使关闭电源,数据也能在惰性液体中保存 43200 秒(或 12 小时)。目前的 FlexRAM 原型由 8 个独立的 1 位存储单元组成,总共存储 1 个字节。它的写入循环次数已超过 3500 次,但还需要进一步提高耐用性才能投入实际使用。商用 RAM 的额定读写周期可达数百万次。毫米级金属液滴最终可达到纳米级尺寸,从而显著提高内存密度。FlexRAM 代表着可自由弯曲和挠曲的电路和电子元件领域的一个突破。研究人员设想的应用领域包括软机器人、医疗植入物和柔性可穿戴设备。与可拉伸基板的兼容性为新兴技术释放了巨大潜力。虽然 FlexRAM 仍处于早期概念阶段,但它证明了曾经被认为不可能或不切实际的计算和内存创新,可以通过不懈的科学创造力变为现实。它加入了柔性电子研究的先锋浪潮,实现了比刚性硅更高的灵活性。在 FlexRAM 和液态电子技术改变计算领域之前,仍有许多挑战需要解决。但是,通过证明液态存储器件是可能的,这项技术将为电子和计算带来截然不同的未来。下图是作为 FlexRAM 突破性技术的液态金属液滴。 ... PC版: 手机版:

封面图片

美国佛蒙特大学、塔夫茨和哈佛等机构研究人员此前通过超级计算机设计且利用青蛙胚胎干细胞,制作出一种微型生物体,它能进行新式

美国佛蒙特大学、塔夫茨大学和哈佛大学等机构研究人员此前通过超级计算机设计且利用青蛙胚胎干细胞,制作出一种微型生物体,它能进行新式自我复制,并将其称为“活体机器人”。 这项在线发表在美国《国家科学院学报》上的研究结果显示,科研人员将大量这种“活体机器人”与游离胚胎干细胞一起置于培养皿中,发现造型类似“吃豆人”的“活体机器人”能在培养皿中移动,自发寻找游离的胚胎干细胞,并将数百个干细胞汇聚起来,在“吃豆人”嘴部近旁组成“婴儿机器人”。几天后,“婴儿机器人”会变成在外形及移动方式上与“母体”完全一样的“活体机器人”,这些新生代能自行游移,寻找游离胚胎干细胞并继续自我复制。 论文主要作者、在塔夫茨大学和哈佛大学担任联合博士后研究员的萨姆·克里格曼说,“这些青蛙细胞是以与青蛙(繁殖)完全不同的方式自我复制。在已知科学领域,没有哪种动物或植物以这种方式自我复制”。 据研究人员介绍,为提高“母体”繁殖效率,研究团队利用人工智能程序为“活体机器人”模拟测试了大量不同体型,其中包括许多奇怪设计,例如“吃豆人”造型等。实验结果显示,“吃豆人”造型的“活体机器人”可以完成多代繁殖。 这项研究同时引发了人们关于科研伦理的讨论。论文通讯作者、佛蒙特大学计算机研究人员乔舒亚·邦加德回应说,这些毫米尺寸的“活体机器人”仅存在于实验室,很容易被销毁,并且该研究已经过美国联邦、州以及学术机构的伦理专家审查。研究人员表示,该研究在再生医疗领域有广泛应用前景,或有助于提供新解决方案以处理外伤、出生缺陷、癌症和衰老等问题。 (新华社,国家科学院学报)

封面图片

编辑推荐:加来道雄、克莱格、布鲁克斯等世界物理学家,将想象力推向极致。

编辑推荐: 加来道雄、克莱格、布鲁克斯等世界物理学家,将想象力推向极致。 走进量子力学、平行宇宙、相对论,探求万物理论和宇宙终解。 8位诺贝尔奖获得者、11位天文学家、31位物理学家联合推荐。 内容简介: 本套丛书包括:《超弦论》《超空间》《平行宇宙》《心灵的未来》《物理学的未来》《宇宙相对论》《科学大浩劫》《构造时间机器》《未来科技的13个密码》《不确定的边缘》《生物中心主义》共11册。 《超弦论》 加来道雄教授为我们权威解读“超弦理论”,作者分析了超弦理论的诞生、定义以及它的重要意义。这项革命性的突破极可能将爱因斯坦的毕生梦想“万物理论”变为现实。 《超空间》 豆瓣评分9.2分,重在为普通读者打开科学的心扉,将最前沿的科学思想告知大众,打开对未来科学的探索之门。作者生动而形象地为我们解释了维度问题,以帮助读者对高维世界的理解。通常来说,某一维度总会在它的次级维度中展示它在那一维度中的一个局部。次级维度的生物只能按此方法逆向构思上级维度的景象。作者认为可以通过弦理论推导出十维宇宙。 《平行宇宙》 豆瓣评分8.5分!本书共三部分,第一部分宇宙,描述了宇宙诞生时的情景、大爆炸理论、目前主流的宇宙膨胀理论和平行宇宙概念。第二部分多元宇宙,描述了多元宇宙的空间维度与时间旅行、平行量子宇宙、弦理论和M理论。第三部分遁入超空间,描述了当我们的宇宙濒临死亡进入大冻结时,如何借助超空间逃往与我们宇宙平行的其他宇宙,将人类文明传承下来。 《心灵的未来》 豆瓣评分8.3分,为我们了解全世界顶级实验室中令人惊叹的研究提供了权威的、让人着迷的视野,这些研究都围绕着神经科学和物理学的最新进展展开。不仅使我们深入地了解大脑的运行方式,还告诉我们这些技术将如何改变我们的日常生活。 《物理学的未来》 豆瓣评分8.0分,本书从超级计算机、人工智能、未来医学、纳米机器人、未来能源、太空旅行、职位财富、行星文明、未来生活九个方面,让外行和内行能够看到有什么最不可思议的科技成果在等待着我们。我们应该怎样应对挑战,抓住这一百年决定人类最终命运的轨迹。阅读这本书,将引进你心灵的最强烈震撼。 《宇宙相对论》 构架构建一个全新的宇宙模型,从空间、时间、物质、运动、引力、生命等多维度诠释相对论与它们的关系,如何正确理解相对论,认识宇宙演进规律背后潜藏的根本机制。 《科学大浩劫》 一书从9个方向为读者诠释科学是双刃剑,既能给人类提供便利,也能给人类带来浩劫。终篇总结并提出警示,只有正确认识科学、采用正确的方式对待和研究科学,才能在真正意义上促进科学发展,才能让科学造福于人类。 《构造时间机器》 为读者回答了时间是什么?时间如何操控?时间回退与时间前进的科学原理是什么?时间机器能构造吗?此外,克莱格带领读者走近时间旅行者,理论分析了时间机器无法返回到它首次被发明之前的科学原因。他探讨了宇宙空间中量子纠缠、超光速、中子星圆柱体和太空虫洞产生时间旅行的非凡可能性。 《未来科技的13个密码》 一书合计13章,详述了迷人的宇宙13谜。揭秘黑洞、暗物质、火星生命。 《不确定的边缘》 通过11个新发现,布鲁克斯带领我们领略了世界前沿科学。从宇宙起源的观点可能被改写开始,到隐藏于生存意愿背后的新奇生命现象的探索,直至揭示意识的生理学根源。 《生物中心主义》 通过一位生物学家的观点和天文学家的讲述,展现了一个完全不同于前人的宇宙我们自身我们的生命和意识,引领读者走上一个看似不可能但最终不可避免的旅程。 #套装 #科普 #通俗读物 #物理 #科学 #生物

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人