研究人员控制玻色-爱因斯坦凝聚态波动 用创新冷却方法稳定量子实验

研究人员控制玻色-爱因斯坦凝聚态波动 用创新冷却方法稳定量子实验 维也纳理工大学(TU Wien)现在已经证明,可以通过一种有趣的新方法实现这种冷却:玻色-爱因斯坦凝结物被分成两部分,既不是突然也不是特别缓慢,而是以一种非常特殊的时间动态来确保尽可能完美地防止随机波动。这样,本已极冷的玻色-爱因斯坦凝聚态的相关温度就可以大大降低。这对于量子模拟器来说非常重要,维也纳工业大学利用量子模拟器来深入了解以前的方法无法研究的量子效应。"我们在研究中使用量子模拟器,"Maximilian Prüfer 说,他正在德国联邦科学基金会 Esprit 补助金的帮助下,在维也纳工业大学原子研究所研究新方法。"量子模拟器是一种系统,其行为由量子力学效应决定,可以很好地控制和监测。因此,这些系统可用于研究量子物理学的基本现象,而这些现象也会出现在其他量子系统中,但这些系统却不容易研究"。张甜甜和 Maximilian Prüfer。图片来源:维也纳工业大学这意味着,一个物理系统实际上是用来了解其他系统的。这种想法在物理学中并不新鲜:例如,你也可以通过水波实验来了解声波,但水波更容易观察。马克西米利安-普吕费尔(Maximilian Prüfer)说:"在量子物理学中,量子模拟器近年来已成为一种极为有用的多功能工具。实现有趣模型系统的最重要工具之一是极冷原子云,比如我们在实验室研究的那些原子云"。在目前发表在《物理评论 X》上的这篇论文中,约尔格-施米德迈尔和马克西米利安-普吕费尔领导的科学家们研究了量子纠缠如何随时间演变,以及如何利用这一点实现比以前更冷的温度平衡。量子模拟也是最近启动的 QuantA 英才集群的核心课题,该集群正在研究各种量子系统。"越冷越好目前,限制这种量子模拟器适用性的决定性因素通常是其温度,马克西米利安-普吕费尔(Maximilian Prüfer)说:"我们越能冷却冷凝物中有趣的自由度,就越能更好地利用它,也就能从中学到更多东西。"冷却的方法有很多种:例如,可以通过非常缓慢地增加气体体积来冷却气体。对于极冷的玻色-爱因斯坦凝聚态,通常会使用其他技巧:快速移除能量最高的原子,直到只剩下一组原子,这些原子具有相当均匀的低能量,因此温度较低。该研究的第一作者张甜甜说:"但我们使用了一种完全不同的技术。我们制造了一个玻色-爱因斯坦凝聚态,然后通过在中间制造一个屏障将其分成两部分。最终位于屏障右侧和左侧的粒子数量是不确定的。由于量子物理定律,这里存在一定的不确定性。可以说,两边都处于不同粒子数量状态的量子物理叠加中。"张甜甜在维也纳量子科技中心博士学院的博士论文中研究了这一课题。马克西米利安-普吕费尔说:"平均而言,正好有 50% 的粒子在左边,50% 在右边。但量子物理学认为,粒子总是存在一定的波动。这种波动,即与预期值的偏差,与温度密切相关"。通过控制波动降温维也纳科技大学的研究团队能够证明:玻色-爱因斯坦凝聚态的极速或极慢分裂都不是最佳的。必须找到一种折中的方法,一种巧妙定制的动态分裂凝结物的方法,以尽可能好地控制量子波动,这个问题无法用传统计算机解决。但通过实验,研究小组能够证明:适当的分裂动力学可以用来抑制粒子数量的波动,而这反过来又会降低温度,从而达到最小化的目的。马克西米利安-普吕费尔解释说:"这个系统中同时存在不同的温标,我们降低的是其中一个非常特殊的温标。因此,不能把它想象成一个整体温度明显变低的迷你冰箱。但我们要说的不是这个:抑制波动正是我们所需要的,这样我们就能比以前更好地把我们的系统用作量子模拟器。我们现在可以用它来回答以前无法回答的基本量子物理学问题。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

我国首次成功构建超越经典计算机的量子模拟器

我国首次成功构建超越经典计算机的量子模拟器 经过十多年科研攻关,中国科学技术大学潘建伟院士团队成功构建了求解费米子哈伯德模型的超冷原子量子模拟器,以超越经典计算机的模拟能力首次验证了该体系中的反铁磁相变,朝向获得该模型低温相图、理解高温超导机理迈出了重要的第一步,也全新打开了构建专用量子模拟机的大门。相关研究成果于 7 月 10 日在国际学术期刊《自然》发表。

封面图片

弯曲的现实:南极冰川中的爱因斯坦与量子力学

弯曲的现实:南极冰川中的爱因斯坦与量子力学 南极洲星空下的冰立方实验室。图片来源:马丁-沃尔夫,冰立方/NSF要解释物质和光在亚原子尺度上的行为,就必须理解量子力学的随机性。几十年来,科学家们一直试图将这两个研究领域结合起来,实现对引力的量子描述。这将结合与广义相对论相关的曲率物理学和与量子力学相关的神秘随机波动。美国得克萨斯大学阿灵顿分校的物理学家在《自然-物理》杂志上发表了一项新研究报告,他们利用设置在南极冰川深处的粒子探测器探测到的超高能量中微子粒子,对这两种理论之间的界面进行了深入的新探索。DOM 降入阵列,开始采集数据。资料来源:马克-克拉斯伯格,冰立方/NSF物理学副教授本杰明-琼斯(Benjamin Jones)说:"将量子力学与引力理论统一起来的挑战仍然是物理学中最紧迫的未决问题之一。如果引力场的行为方式与自然界中的其他场类似,那么它的曲率就应该表现出随机量子波动。"琼斯和UTA研究生阿克希玛-内吉(Akshima Negi)、格兰特-帕克(Grant Parker)是冰立方国际合作团队的成员,该团队包括来自美国各地以及澳大利亚、比利时、加拿大、丹麦、德国、意大利、日本、新西兰、韩国、瑞典、瑞士、台湾和英国的300多名科学家。德克萨斯大学阿灵顿分校物理学副教授本杰明-琼斯。图片来源:德克萨斯大学阿灵顿分校为了寻找量子引力的特征,研究小组在南极洲南极附近一平方公里的范围内放置了数千个传感器用于监测中微子,中微子是一种电荷中性、没有质量的不寻常但却非常丰富的亚原子粒子。研究小组对 30 多万个中微子进行了研究。他们想看看这些超高能量粒子在地球上长途旅行时,是否会受到时空中随机量子波动的干扰,如果引力是量子力学的,那么这种波动是意料之中的。内吉说:"我们通过研究冰立方天文台探测到的中微子的味道来寻找这些波动。我们工作的结果是,测量结果比以前的测量结果灵敏得多(对某些模型而言,灵敏度超过一百万倍),但却没有发现预期的量子引力效应的证据。"没有观测到时空的量子几何,这有力地说明了在量子物理学和广义相对论交界处运行的仍然未知的物理学。琼斯说:"这项分析是UTA近十年来为冰立方天文台所做贡献的最后一章。我的小组现在正在进行新的实验,旨在利用原子、分子和光学物理技术了解中微子质量的起源和价值。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员成功冷却了正电子原子 对反物质研究产生了重大影响

研究人员成功冷却了正电子原子 对反物质研究产生了重大影响 正电子冷却。欧洲核子研究中心的 AEgIS 合作小组在实验中演示了使用基于变石的激光系统对正电子进行激光冷却。资料来源:欧洲核子研究中心-米兰理工大学研究人员成功冷却了正电子原子,对反物质研究产生了重大影响,并促成了量子电动力学的新实验和反物质玻色-爱因斯坦凝聚物的可能性。被正电子束击中的多孔靶(室温)中流出的 Ps 原子的等效温度从 380 K 降至 170 K,相应地,Ps 均方根速度的横向分量也从 54 km/s 降至 37 km/s。正电子的独特性质Ps 是氢的小兄弟,正电子取代了质子。因此,它比氢轻约 2000 倍,能级降低了 2 倍。它很不稳定:在真空和基态下,两个粒子的自旋平行,它的湮灭寿命只有 142 毫微秒。在其短暂的生命周期内,必须进行 Ps 冷却,这使得这一过程相对于普通原子而言极具挑战性。使用大带宽脉冲激光器的好处是可以冷却大部分正电子云,同时延长它们的有效寿命,从而在冷却后获得更多的 Ps 供进一步实验使用。对反物质研究的影响AEgIS 实验的目的是测量反氢气的重力加速度(作为反物质弱等价原理的测试),在该实验中,最后一个加速度是通过处于激发态的 Ps 与被困反质子之间的反应获得的。Ps的速度越低,形成反氢的概率就越高,因此必须尽可能产生动能最低的Ps。推进基础科学和潜在应用获得足够"冷"的 Ps 原子对基础科学至关重要,例如,对 Ps 激发能级进行精密光谱分析,可以前所未有的精度测试量子电动力学,或用纯轻子系统测试等效原理。此外,建立一个冷铂原子集合体的可能性可以为第一个反物质玻色-爱因斯坦凝聚态(BEC,已通过激光冷却普通原子获得)铺平道路,在这种状态下,量子力学现象会宏观地显现出来。正电子玻色-爱因斯坦凝聚态将导致受激湮灭,这已被提议作为产生伽马射线能量范围内的相干电磁辐射的一种方法。该成果已作为编辑亮点发表在《物理评论快报》上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中科院院士段路明团队在量子研究领域取得重要突破 《自然》官网发表

中科院院士段路明团队在量子研究领域取得重要突破 《自然》官网发表 段路明院士(右一)指导学生实验。清华大学 供图研究团队介绍,离子阱系统被认为是最有希望实现大规模量子模拟和量子计算的物理系统之一,多个实验验证了离子量子比特的高精密相干操控,该系统的规模化被认为是主要挑战。清华段路明研究组利用低温一体化离子阱技术和二维离子阵列方案,大规模扩展离子量子比特数,提高离子阵列稳定性,首次实现512离子二维阵列的稳定囚禁和边带冷却,并首次对300离子实现可单比特分辨的量子态测量。研究人员进而利用300个离子量子比特实现可调耦合的长程横场伊辛模型的量子模拟计算。长程横场伊辛模型,是一类重要的量子多体模型,有助于理解量子信息、凝聚态物理等领域的基本问题,也可用于求解优化问题等现实应用。该工作实现了国际上最大规模具有单比特分辨率的多离子量子模拟计算,将该研究组保持的离子量子比特数国际记录(61离子),往前推进了一大步,首次实现基于二维离子阵列的大规模量子模拟。研究人员还对该模型的动力学演化进行量子模拟计算,300个离子量子比特同时工作时,所能执行的计算复杂度达到2的300次方,超越经典计算机的直接模拟能力。该实验系统为进一步研究多体非平衡态量子动力学这一重要难题提供了强大的工具。 ... PC版: 手机版:

封面图片

中国科大首次实现光子的分数量子反常霍尔态

中国科大首次实现光子的分数量子反常霍尔态 成果示意图。16个非线性“光子盒”阵列囚禁的微波光子强相互作用形成分数量子反常霍尔态。霍尔效应是指当电流通过置于磁场中的材料时,电子受到洛伦兹力的作用,在材料内部产生垂直于电流和磁场方向的电压。反常霍尔效应是指无需外部磁场的情况下观测到相关效应。分数量子霍尔态展现出非平庸的多体纠缠,对其研究所衍生出的拓扑序、复合费米子等理论成果逐渐成为多体物理学的基本模型。与此同时,分数量子霍尔态可激发出局域的准粒子,这种准粒子具有奇异的分数统计和拓扑保护性质,有望成为拓扑量子计算的载体。传统的量子霍尔效应实验研究采用“自顶而下”的方式,即在特定材料的基础上,利用该材料已有的结构和性质实现制备量子霍尔态。通常情况下,需要极低温环境、极高的二维材料纯净度和极强的磁场,对实验要求较为苛刻。此外,传统“自顶而下”的方法难以对系统微观量子态进行单点位独立地操控和测量,一定程度上限制了其在量子信息科学中的应用。人工搭建的量子系统结构清晰,灵活可控,是一种“自底而上”研究复杂量子物态的新范式。其无需外磁场,通过变换耦合形式即可构造出等效人工规范场;通过对系统进行高精度可寻址的操控,可实现对高集成度量子系统微观性质的全面测量,并加以进一步可控的利用。这类技术被称为量子模拟,是“第二次量子革命”的重要内容,有望在近期应用于模拟经典计算困难的量子系统并达到“量子计算优越性”。据介绍,此前,国际上已经基于其开展了一些合成拓扑物态、研究拓扑性质的量子模拟工作。然而,由于以往系统中耦合形式和非线性强度的限制,人们一直未能在二维晶格中为光子构建人工规范场。为解决这一重大挑战,研究团队在国际上自主研发并命名了一种新型超导量子比特Plasmonium,打破了目前主流的Transmon(传输子型)量子比特相干性与非简谐性之间的制约,用更高的非简谐性提供了光子间更强的排斥作用。进一步,团队通过交流耦合的方式构造出作用于光子的等效磁场,使光子绕晶格的流动可积累Berry(贝里)相位,解决了实现光子分数量子反常霍尔效应的两个关键难题。同时,这样的人造系统具有可寻址、单点位独立控制和读取,以及可编程性强的优势,为实验观测和操纵提供了新的手段。在该项工作中,研究人员观测到了分数量子霍尔态独有的拓扑关联性质,验证了该系统的分数霍尔电导。同时,他们通过引入局域势场的方法,跟踪了准粒子的产生过程,证实了准粒子的不可压缩性质。《科学》杂志审稿人高度评价这一工作,认为这一工作“是利用相互作用光子进行量子模拟的重大进展”“一种新颖的局域单点控制和自底而上的途径”。诺贝尔物理学奖得主Frank Wilczek评价,这种“自底而上”、用人造原子构建哈密顿量的途径是一个“非常有前途的想法”,这是一个令人印象深刻的实验,为基于任意子的量子信息处理迈出了重要一步。沃尔夫奖获得者Peter Zoller评价,“这在科学和技术上都是一项杰出的成就” “实现这样的目标是多年来全球顶级实验室竞争的量子模拟的圣杯之一”。 ... PC版: 手机版:

封面图片

潘建伟团队成功构建求解费米子哈伯德模型的超冷原子量子模拟器

潘建伟团队成功构建求解费米子哈伯德模型的超冷原子量子模拟器 相关研究成果于7月10日在线发表在国际学术期刊《自然》杂志上。“天元”量子模拟器示意。红色和蓝色的小球分别代表自旋相反的原子,它们在三维空间交错排列,形成了反铁磁晶体。原子被光晶格囚禁在玻璃真空腔中。据介绍,费米子哈伯德模型是晶格中电子运动规律的最简化模型,被认为是有希望解释高温超导机理这一困扰物理学界近四十年难题的核心物理模型。一旦理解其物理机制,就能够规模化地设计、生产和应用新型的高温超导材料,在电力传输、医学、超算等领域产生变革性影响。潘建伟院士介绍,量子计算为求解若干经典计算机难以胜任的计算难题提供了全新的方案。此次潘建伟院士团队结合前期研究成果,实现了最低温度的均匀费米简并气体制备,满足了实现反铁磁相变所需要的低温。并进一步创造性地将盒型光势阱和平顶光晶格技术相结合,实现了空间均匀的费米子哈伯德体系的绝热制备。在此基础上,研究团队通过精确调控相互作用强度、温度和掺杂浓度,成功构建出求解费米子哈伯德模型的超冷原子量子模拟器,直接观察到反铁磁相变的确凿证据自旋结构因子在相变点附近呈现幂律的临界发散现象。从而首次验证了费米子哈伯德模型包括掺杂条件下的反铁磁相变。该工作推进了对费米子哈伯德模型的理解,不仅是理解高温超导机理的有效途径,也是量子计算研究的重大突破。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人