麻省理工学院在有毒气体检测技术方面取得了突破性进展

麻省理工学院在有毒气体检测技术方面取得了突破性进展 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 新系统结合了两种现有技术,既保留了各自的优点,又避免了它们的局限性。研究小组使用了一种被称为金属有机框架(MOF)的材料,这种材料对微量气体非常敏感,但其性能很快就会退化,研究小组将其与一种聚合物材料相结合,这种材料非常耐用,更易于加工,但敏感性要低得多。麻省理工学院教授 Aristide Gumyusenge、Mircea Dinca、Heather Kulik 和 Jesus del Alamo、研究生 Heejung Roh 以及博士后 Dong-Ha Kim、Yeongsu Cho 和 Young-Moo Jo 今天在《先进材料》(Advanced Materials)杂志上发表了一篇论文,报告了这一研究成果。麻省理工学院的研究人员开发出一种探测器,可以低成本持续监测有毒气体的存在。研究小组使用了一种名为金属有机框架(MOF)的材料(图中为黑色晶格),这种材料对微量气体高度敏感,但其性能很快就会退化。他们将 MOF 与一种聚合物材料(如图中的茶色半透明链)相结合,这种材料非常耐用,但灵敏度要低得多。图片来源:研究人员提供MOFs多孔性强,表面积大,有多种成分。有些可能是绝缘体,但本研究中使用的 MOFs 具有很强的导电性。它们的形状像海绵,能有效捕捉各种气体分子,其孔隙的大小可以定制,使它们对特定种类的气体具有选择性。"论文的资深作者、材料科学与工程系 Merton C. Flemings 职业发展助理教授 Gumyusenge 说:"如果把它们用作传感器,只要气体对 MOF 的电阻率有影响,就能识别出气体是否存在。这些材料用作气体检测器的缺点是容易饱和,无法再检测和量化新输入的气体。"这不是你想要的。你想要的是能够检测和重复使用,"Gumyusenge 说。"因此,我们决定使用聚合物复合材料来实现这种可逆性。"研究小组使用了一类导电聚合物,Gumyusenge 和他的同事们之前已经证明,这类聚合物可以对气体做出反应,而不会与气体永久结合。"他说:"这种聚合物虽然没有 MOFs 那样的高表面积,但至少可以提供这种识别-释放型现象。研究人员在一个实验室规模的小型装置中展示了这种材料检测一氧化二氮(一种由多种燃烧产生的有毒气体)的能力。经过 100 次检测后,这种材料仍能保持其基线性能,误差在 5% 到 10% 之间,这证明了它具有长期使用的潜力。以下是传感装置的布局。图片来源:研究人员提供研究小组将液态溶液中的聚合物与粉末状的 MOF 材料结合在一起,然后将混合物沉积在基底上,干燥后形成一层均匀的薄涂层。他说:"通过将具有快速检测能力的聚合物和灵敏度更高的 MOF 以一比一的比例结合在一起,我们突然得到了一种传感器,它既具有 MOF 带来的高灵敏度,又具有聚合物带来的可逆性。"当气体分子暂时滞留在材料中时,材料的电阻会发生变化。只需安装一个欧姆表来跟踪电阻随时间的变化,就能持续监测这些电阻变化。Gumyusenge 和他的学生们在一个实验室规模的小型装置中演示了这种复合材料检测二氧化氮的能力。经过 100 次检测后,该材料仍能保持其基线性能,误差在 5% 到 10% 之间,证明了其长期使用的潜力。此外,研究小组报告说,这种材料的灵敏度远远高于目前使用的大多数二氧化氮检测器。这种气体经常在使用炉灶后被检测到。而且,由于这种气体最近与美国的许多哮喘病例有关,因此对低浓度的可靠检测非常重要。研究小组证明,这种新型复合材料可以可逆地检测到浓度低至百万分之二的气体。虽然他们的演示是专门针对二氧化氮的,但 Gumyusenge 说:"我们可以调整化学成分,使其针对其他挥发性分子,只要它们是小的极性分析物,这往往是大多数有毒气体"。除了与简单的手持式探测器或烟雾报警装置兼容之外,这种材料的一个优点是,聚合物使其能够沉积成极薄的均匀薄膜,而不像普通的 MOFs 通常是低效的粉末状。由于薄膜非常薄,因此所需的材料很少,生产材料成本可能很低;加工方法可以是典型的工业涂料加工方法。Gumyusenge说:"因此,限制因素可能是聚合物合成规模的扩大,我们一直在少量合成聚合物。"他说:"下一步将是在实际环境中对这些材料进行评估。例如,可以在烟囱或排气管上涂上这种材料,通过附带的电阻监测装置读取数据,对气体进行连续监测。在这种环境下,我们需要进行测试,以检查我们是否真正将其与实验室环境中可能忽略的其他潜在污染物区分开来。让我们把传感器放到真实世界的场景中,观察它们的效果如何"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

《侏罗纪公园》剧情成真:麻省理工学院创造出用于储存 DNA 的合成琥珀

《侏罗纪公园》剧情成真:麻省理工学院创造出用于储存 DNA 的合成琥珀 DNA 保存技术的进步在电影《侏罗纪公园》中,科学家提取了在琥珀中保存了数百万年的 DNA,并用它创造了早已灭绝的恐龙种群。麻省理工学院的研究人员部分受这部电影的启发,开发出一种玻璃状、类似琥珀的聚合物,可用于长期存储 DNA,无论是整个人类基因组还是照片等数字文件。目前大多数储存 DNA 的方法都需要冷冻温度,因此需要消耗大量能源,在世界上许多地方都不可行。相比之下,新型琥珀状聚合物可以在室温下储存 DNA,同时保护分子不受热量或水的破坏。研究人员证明,他们可以用这种聚合物存储编码《侏罗纪公园》主题音乐的 DNA 序列以及整个人类基因组。他们还证明,DNA 可以很容易地从聚合物中取出,而不会对其造成损坏。简化 DNA 保存技术前麻省理工学院博士后詹姆斯-巴纳尔(James Banal)说:"冷冻 DNA 是保存 DNA 的首要方法,但这种方法非常昂贵,而且无法扩展。我认为,我们的新保存方法将成为一种可能推动未来在 DNA 上存储数字信息的技术"。巴纳尔和麻省理工学院A. Thomas Geurtin化学教授杰里迈亚-约翰逊(Jeremiah Johnson)是这项研究的资深作者,他们的研究成果于6月12日发表在《美国化学学会学报》(Journal of the American Chemical Society)上。麻省理工学院前博士后 Elizabeth Prince 和麻省理工学院博士后 Ho Fung Cheng 是论文的主要作者。麻省理工学院的研究人员设计出了一种将 DNA 封装到一种名为交联聚苯乙烯的热固性聚合物中的方法。DNA 被嵌入聚合物后,可以通过用半胱胺处理聚合物再次释放出来。图片来源:研究人员提供探索新的 DNA 编码方法DNA 是一种非常稳定的分子,非常适合存储海量信息,包括数字数据。数字存储系统将文本、照片和其他类型的信息编码为一系列 0 和 1。同样的信息可以通过构成遗传密码的四种核苷酸编码到 DNA 中:例如,G 和 C 可用来表示 0,而 A 和 T 则表示 1。DNA 提供了一种高密度存储数字信息的方法:从理论上讲,一个装满 DNA 的咖啡杯就可以储存全世界的数据。DNA 还非常稳定,合成和排序也相对容易。2021 年,巴纳尔和他的博士后导师、麻省理工学院生物工程教授马克-巴特(Mark Bathe)开发出一种将 DNA 储存在二氧化硅颗粒中的方法,这些颗粒可以贴上标签,显示颗粒中的内容。这项工作促成了名为"Cache DNA"的衍生公司的诞生。这种储存系统的一个缺点是,将 DNA 嵌入二氧化硅颗粒需要几天的时间。此外,从颗粒中移除 DNA 需要氢氟酸,而氢氟酸会对处理 DNA 的工人造成危害。用于 DNA 存储的创新聚合物设计为了找到替代存储材料,巴纳尔开始与约翰逊及其实验室成员合作。他们的想法是使用一种被称为可降解热固性的聚合物,这种聚合物在加热时会形成固体。这种材料还包括易于断裂的可裂解链节,使聚合物能够以可控的方式降解。约翰逊说:"有了这些可解构热固性塑料,根据我们在其中加入的可裂解键,我们可以选择如何降解它们。"在这个项目中,研究人员决定用苯乙烯和一种交联剂来制造热固性聚合物,它们共同形成了一种琥珀色的热固性聚合物交联聚苯乙烯。这种热固性聚合物还具有很强的疏水性,因此可以防止水分进入并破坏 DNA。为了使这种热固性物质可以降解,苯乙烯单体和交联剂与称为亚硫酰内酯的单体共聚。通过使用一种名为半胱胺的分子对其进行处理,可以切断这些连接。T-REX 方法:DNA 储存的新方法由于苯乙烯非常疏水,研究人员必须想出一种方法来诱导 DNA(一种亲水性、带负电荷的分子)进入苯乙烯。为此,他们找到了三种单体的组合,并将其转化为聚合物,通过帮助 DNA 与苯乙烯相互作用来溶解 DNA。每种单体都有不同的特性,它们通力合作,使 DNA 离开水进入苯乙烯。在那里,DNA 形成球形复合物,带电的 DNA 位于中心,疏水基团形成与苯乙烯相互作用的外层。加热后,这种溶液会变成玻璃状的固体块,其中嵌入 DNA 复合物。研究人员将他们的方法命名为 T-REX(热固性强化湿保存)。研究人员说,将DNA嵌入聚合物网络的过程需要几个小时,但随着进一步优化,这个时间可能会缩短。为了释放 DNA,研究人员首先加入半胱胺,半胱胺会裂解将聚苯乙烯热固性材料连接在一起的键,将其分解成小块。然后,再加入一种名为 SDS 的洗涤剂,这样就能在不损坏聚苯乙烯的情况下将 DNA 从聚苯乙烯中分离出来。DNA 存储技术的未来研究人员利用这些聚合物证明,他们可以封装不同长度的 DNA,从几十个核苷酸到整个人类基因组(超过 50000 个碱基对)。除了《侏罗纪公园》的主题音乐外,他们还能存储编码《解放奴隶宣言》和麻省理工学院徽标的 DNA。在对 DNA 进行存储和移除之后,研究人员对其进行了测序,发现没有引入任何错误,这是任何数字数据存储系统的关键特征。研究人员还发现,这种热固性聚合物可以在高达 75摄氏度(167华氏度)的温度下保护 DNA。目前,他们正在研究如何简化聚合物的制作过程,并将其制成胶囊,以便长期储存。对个性化医疗和未来研究的影响Cache DNA 是由 Banal 和 Bathe 创办的一家公司,Johnson 是该公司科学顾问委员会的成员。他们设想的最早应用是存储用于个性化医疗的基因组,他们还预计,随着未来更好技术的开发,这些存储的基因组可能会被进一步分析。"我们的想法是,为什么不永远保存生命的主记录呢?巴纳尔说。"10年或20年后,当科技的进步远远超出我们今天的想象时,我们可以了解到越来越多的东西。我们对基因组及其与疾病的关系的了解还处于起步阶段。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院在将二维材料集成到设备方面取得突破

麻省理工学院在将二维材料集成到设备方面取得突破 这幅艺术家的作品展示了麻省理工学院研究人员开发的一种新型集成平台。通过对表面力进行工程设计,他们只需一个接触和释放步骤,就能将二维材料直接集成到设备中。图片来源:Sampson Wilcox/电子研究实验室提供但是,将二维材料集成到计算机芯片等设备和系统中是众所周知的难题。这些超薄结构可能会受到传统制造技术的破坏,这些技术通常依赖于使用化学品、高温或蚀刻等破坏性工艺。为了克服这一挑战,麻省理工学院和其他大学的研究人员开发出了一种新技术,只需一步就能将二维材料集成到设备中,同时保持材料表面和由此产生的界面原始无缺陷。他们的方法依赖于纳米级的工程表面力,使二维材料可以物理叠加到其他预制设备层上。由于二维材料不会受损,研究人员可以充分利用其独特的光学和电学特性。所开发的平台利用行业兼容的工具集,使这一过程可以扩展。在这里,主要作者彼得-萨特斯韦特(Peter Satterthwaite)使用 MIT.nano 中修改过的配准工具进行图案化配准集成。他们利用这种方法制造出了二维晶体管阵列,与使用传统制造技术制造出的器件相比,实现了新的功能。他们的方法用途广泛,可用于多种材料,可在高性能计算、传感和柔性电子器件等领域广泛应用。释放这些新功能的核心是形成清洁界面的能力,所有物质之间存在的特殊力量(称为范德华力)将这些界面连接在一起。电子工程与计算机科学(EECS)助理教授、电子学研究实验室(RLE)成员 Farnaz Niroui 是介绍这项工作的新论文的资深作者。"范德华积分有一个基本限制,"她解释说,"由于这些作用力取决于材料的内在特性,因此无法轻易调整。因此,有些材料无法仅利用其范德华相互作用来直接相互整合。我们提出了一个解决这一限制的平台,以帮助范德华集成变得更加通用,从而促进具有新功能和改进功能的基于二维材料的设备的开发。"Niroui 与论文第一作者、电子工程与计算机科学研究生 Peter Satterthwaite,电子工程与计算机科学教授、RLE 成员 Jing Kong,以及麻省理工学院、波士顿大学、台湾国立清华大学、台湾国家科学技术委员会和台湾国立成功大学的其他人共同撰写了这篇论文,这项研究最近发表在《自然-电子学》上。纳米级表面力的多样性使研究人员能够将粘合剂基质转移到许多不同的材料上。例如,在这里,通过使用粘合聚合物,他们能够将图案化的石墨烯(一原子厚的碳薄片)从源基底(上图)转移到接收粘合聚合物(下图)上。图片来源:Niroui 小组提供使用传统制造技术制造计算机芯片等复杂系统可能会变得一团糟。通常情况下,像硅这样的硬质材料会被凿成纳米级,然后与金属电极和绝缘层等其他元件连接,形成有源器件。这种加工过程会对材料造成损害。最近,研究人员专注于使用二维材料和一种需要连续物理堆叠的工艺,自下而上地构建设备和系统。在这种方法中,研究人员不是使用化学胶水或高温将脆弱的二维材料粘合到硅等传统表面上,而是利用范德华力将一层二维材料物理集成到设备上。范德华力是存在于所有物质之间的自然吸引力。例如,壁虎的脚会因为范德华力而暂时粘在墙上。虽然所有材料都存在范德华力,但根据材料的不同,范德华力并不总是强大到足以将它们粘在一起。例如,一种名为二硫化钼的流行半导体二维材料会粘在黄金上,但不会通过与二氧化硅等绝缘体表面的物理接触直接转移到该表面上。然而,通过整合半导体层和绝缘层制成的异质结构是电子设备的关键组成部分。以前,实现这种集成的方法是将二维材料粘合到一个中间层(如金)上,然后使用该中间层将二维材料转移到绝缘体上,最后再使用化学品或高温去除中间层。麻省理工学院的研究人员没有使用这种牺牲层,而是将低粘性绝缘体嵌入高粘性基质中。这种粘合基质使二维材料粘附在嵌入的低粘合力表面上,提供了在二维材料和绝缘体之间形成范德华界面所需的力。制作矩阵为了制造电子设备,他们在载体基底上形成金属和绝缘体的混合表面。然后将该表面剥离并翻转,就会看到一个完全光滑的顶面,其中包含所需的器件构件。这种光滑度非常重要,因为表面和二维材料之间的间隙会阻碍范德华相互作用。然后,研究人员在完全洁净的环境中单独制备二维材料,并将其与制备好的器件堆栈直接接触。"一旦混合表面与二维层接触,无需任何高温、溶剂或牺牲层,它就能拾取二维层并将其与表面整合在一起。"萨特斯韦特解释说:"通过这种方式,我们可以实现传统上被禁止的范德华集成,但现在却可以实现,而且只需一步就能形成功能齐全的器件。"这种单步工艺可使二维材料界面保持完全清洁,从而使材料达到其性能的基本极限,而不会受到缺陷或污染的影响。而且,由于二维材料的表面也保持原始状态,研究人员可以对二维材料的表面进行工程设计,以形成与其他元件的特征或连接。例如,他们利用这种技术制造出了 p 型晶体管,而利用二维材料制造这种晶体管通常是具有挑战性的。他们的晶体管在以前的研究基础上有所改进,可以为研究和实现实用电子产品所需的性能提供一个平台。展望未来他们的方法可以大规模地制造更大的装置阵列。粘合基质技术还可用于一系列材料,甚至与其他力量结合使用,以增强这一平台的多功能性。例如,研究人员将石墨烯集成到器件上,利用聚合物基质形成所需的范德华界面。在这种情况下,粘附依靠的是化学作用,而不仅仅是范德华力。未来,研究人员希望以此平台为基础,整合各种二维材料库,在不受加工损伤影响的情况下研究其内在特性,并利用这些卓越功能开发新的设备平台。编译自:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院的超声波技术突破让非侵入性脑部治疗进入新时代

麻省理工学院的超声波技术突破让非侵入性脑部治疗进入新时代 ImPULS 设备包含封装在聚合物中的超声波传感器和电极(金)。图片来源:研究人员提供通过植入电极向大脑输送电脉冲的深部脑刺激疗法通常用于治疗帕金森病和其他神经系统疾病。然而,这种治疗方法所使用的电极最终会腐蚀并积累疤痕组织,需要将其移除。现在,麻省理工学院的研究人员开发出了一种替代方法,即使用超声波而不是电力来进行深部脑刺激,由一根头发丝粗细的纤维传递。在对小鼠的研究中,他们发现这种刺激可以触发神经元释放多巴胺,而多巴胺通常是帕金森病患者大脑中的一部分。"通过使用超声波技术,我们可以创造一种新的方式来刺激大脑深部的神经元发射,"麻省理工学院媒体实验室副教授、这项新研究的资深作者卡南-达格德维仁(Canan Dagdeviren)说。"这种装置比头发丝还要细,因此对组织的损伤可以忽略不计,而且我们很容易在大脑深部导航这种装置。"除了提供一种更安全的深部脑刺激方法外,这种方法还可能成为研究人员了解大脑工作原理的重要工具。麻省理工学院研究生杰森-侯(Jason Hou)和麻省理工学院博士后奥斯曼-高尼-纳耶姆(Md Osman Goni Nayeem)是这篇论文的主要作者,其他合作者来自麻省理工学院麦戈文脑研究所、波士顿大学和加州理工学院。该研究报告于6月4日发表在《自然通讯》(Nature Communications)杂志上。达格德维仁的实验室以前曾开发过可穿戴超声波设备,可用于通过皮肤给药或对各种器官进行诊断成像。然而,超声波无法通过附着在头部或头骨上的设备深入大脑。"如果我们想进入大脑深层,那么它就不能再仅仅是可穿戴或可附着的了。它必须是可植入的,"Dagdeviren 说。"我们精心定制设备,使其具有微创性,避开大脑深部的主要血管"。美国食品和药物管理局已批准使用电脉冲深部脑刺激治疗帕金森病症状。这种方法使用毫米厚的电极来激活大脑黑质区域中产生多巴胺的细胞。然而,一旦植入大脑,设备最终会开始腐蚀,植入物周围形成的疤痕组织会干扰电脉冲。新方法通过一根头发丝粗细的纤维传递超声波。图片来源:研究人员提供麻省理工学院的研究小组开始研究能否用超声波取代电刺激,从而克服其中的一些缺点。大多数神经元都有能对机械刺激(如声波的振动)做出反应的离子通道,因此超声波可用来激发这些细胞的活动。然而,现有的通过头骨向大脑输送超声波的技术无法高精度地深入大脑,因为头骨本身会干扰超声波,导致刺激偏离目标。Nayeem说:"要精确调节神经元,我们必须深入到更深的区域,这促使我们设计出一种新型超声植入物,它能产生局部超声场。为了安全地到达大脑深部区域,研究人员设计了一种由柔性聚合物制成的细如发丝的纤维。纤维的顶端包含一个鼓状超声换能器,换能器上有一层振动膜。这层薄膜包裹着一层薄薄的压电薄膜,当这层薄膜被微小的电压驱动时,就会产生超声波,附近的细胞就能检测到这些超声波。"Hou说:"它对组织安全,没有裸露的电极表面,而且功耗很低,这对转化为病人使用是个好兆头。"在对小鼠进行的试验中,研究人员发现,这种被称为ImPULS(可植入压电超声刺激器)的超声装置可以激发海马神经元的活动。然后,他们将这种纤维植入产生多巴胺的黑质,结果表明,这种纤维可以刺激背侧纹状体的神经元产生多巴胺。"刺激大脑一直是恢复大脑健康最有效但最不为人所知的方法之一。ImPULS让我们有能力以精确的时空分辨率刺激脑细胞,而且不会像其他方法那样产生损伤或炎症。"波士顿大学心理与脑科学助理教授、波士顿大学系统神经科学中心(Center for Systems Neuroscience)教员史蒂夫-拉米雷斯(Steve Ramirez)也是这项研究的作者之一。在新系统中,传感器(银色)由导线(金色)供电,导线可提供电刺激。图片来源:研究人员提供该装置的所有组件都具有生物兼容性,包括压电层,它是由一种名为铌酸钠钾(或 KNN)的新型陶瓷制成的。目前的植入物由外部电源供电,但研究人员设想未来的植入物可以由小型植入式电池和电子装置供电。研究人员开发了一种微加工工艺,使他们能够轻松改变纤维的长度和厚度,以及压电换能器产生的声波频率。这样就能为不同的大脑区域定制设备。Dagdeviren说:"我们不能说这种装置会对大脑的每个区域产生同样的效果,但我们可以非常自信地说,这种技术是可扩展的,而且不仅适用于小鼠。我们还可以把它做得更大,以便最终用于人类。"研究人员现在计划研究超声波刺激会如何影响大脑的不同区域,以及这种装置在植入一年后能否保持功能。他们还对加入微流体通道的可能性很感兴趣,这样就能让装置在传递超声波的同时传递药物。研究人员说,除了有望成为帕金森病或其他疾病的潜在治疗手段外,这种超声波设备还可以成为帮助研究人员进一步了解大脑的宝贵工具。"我们的目标是将其作为一种研究工具提供给神经科学界,因为我们认为我们没有足够的有效工具来了解大脑,"Dagdeviren 说。"作为设备工程师,我们正在努力提供新的工具,以便我们能够更多地了解大脑的不同区域。"编译自/scitechdaily ... PC版: 手机版:

封面图片

麻省理工学院研究人员利用压电纤维开发出主动降噪织物

麻省理工学院研究人员利用压电纤维开发出主动降噪织物 这项发表在《先进材料》(Advanced Materials)杂志上的研究,是在早先研究的基础上,创造出一种可以充当麦克风并放大声音的丝绸织物。在研究过程中,研究小组意识到他们的材料还可以用来过滤声音。他们将后一个想法付诸实践。这种由压电纤维制成的特制织物几乎不比头发丝粗。当施加电压时,这种材料就会振动,如果调整得当,就能像降噪耳机一样抵消传入的声音。这种方法在狭小的空间内很有用,但在室内却不奏效。为了应对这一挑战,他们需要一种不同的方法。研究人员发现,通过使用电压使织物完全静止,可以使其变成一种声屏障,像镜子一样将声音反射回声源。在测试中,直接抑制模式(类似于降噪耳机)能够将音量降低 65 分贝。在"静止"模式下,声音传播降低了 75%。虽然前景广阔,但在考虑商业推广之前,仍有许多工作要做。该团队需要进行更多的测试,以了解纤维数量、缝合方向和电源电压等变量的变化对性能的影响。第一作者格蕾丝-杨(Grace Yang)说,这仅仅是个开始,要让这项技术真正有效,"我们还有很多旋钮可以转动"。他们还需要找出将其推向市场的最佳方法。这项研究的共同作者、麻省理工学院教授尤尔-芬克(Yoel Fink)告表示,这种材料现在还太新,他甚至不知道它的市场在哪里。 ... PC版: 手机版:

封面图片

麻省理工学院的微观超材料可抵御超音速撞击

麻省理工学院的微观超材料可抵御超音速撞击 这就是麻省理工学院工程师在微观超材料实验中的发现这些材料是有意打印、组装或以其他方式设计的,其微观结构赋予了材料整体特殊的性能。在最近发表在《美国国家科学院院刊》上的一项研究中,工程师们报告了一种快速测试超材料结构阵列及其对超音速撞击的适应性的新方法。通过以超音速发射微粒子,麻省理工学院的工程师们可以测试各种超材料的弹性,这些超材料是由小到一个红血球的结构制成的。图为微粒子撞击超材料结构的四段视频截图。图片来源:研究人员提供在实验中,研究小组将印刷好的微小超材料晶格悬挂在微观支撑结构之间,然后以超音速向材料发射更微小的粒子。然后,研究小组利用高速摄像机以纳秒级的精度捕捉每次撞击及其后果的图像。他们的研究发现了一些超材料结构,与完全固态、非结构化的同类材料相比,它们更能抵御超音速撞击。研究人员说,他们在微观层面观察到的结果可以推广到类似的宏观冲击,从而预测新材料结构在不同长度尺度上如何抵御现实世界中的冲击。研究人员打印出错综复杂的蜂窝状材料,悬浮在相同材料的支撑柱之间(如图)。这种微观结构的高度相当于人类三根头发的宽度。图片来源:研究人员提供"我们正在学习的是,材料的微观结构很重要,即使在高速变形的情况下也是如此,"研究报告的作者、麻省理工学院机械工程系教授卡洛斯-波特拉(Carlos Portela)说。"我们希望找出抗冲击结构,将其制成涂层或面板,用于航天器、车辆、头盔以及任何需要轻质和保护的物体。"该研究的其他作者包括第一作者、麻省理工学院研究生托马斯-布特鲁伊尔(Thomas Butruille)和DEVCOM陆军研究实验室的约书亚-克龙(Joshua Crone)。纯粹的影响团队的新高速实验建立在之前工作的基础上,工程师们在实验中测试了一种超轻碳基材料的韧性。这种材料比人的头发丝还细,由微小的碳支柱和碳束制成,研究小组打印了这些碳支柱和碳束,并将其放置在玻璃载玻片上。然后,他们以超过音速的速度向材料发射微粒子。这些超音速实验表明,微结构材料能够承受高速撞击,有时能使微粒子偏转,有时则能捕获它们。Portela说:"但有许多问题我们无法回答,因为我们是在基底上测试材料,这可能会影响它们的行为。"麻省理工学院的工程师们捕捉到了微粒子通过精确设计的超材料发射的视频,其测量厚度比人的头发丝还细。图片来源:研究人员提供在他们的新研究中,研究人员开发了一种测试独立超材料的方法,以观察材料在没有背衬或支撑基底的情况下,自身如何承受撞击。在目前的设置中,研究人员将感兴趣的超材料悬挂在两根由相同基础材料制成的微型支柱之间。根据被测试超材料的尺寸,研究人员计算出两根支柱必须相距多远,才能在两端支撑材料,同时让材料对任何冲击做出反应,而不受支柱本身的影响,这样就能确保我们测量的是材料特性,而不是结构特性。研究小组确定了支柱支撑设计后,便开始测试各种超材料架构。对于每种结构,研究人员首先在一个小型硅芯片上打印出支撑柱,然后继续打印超材料作为柱子之间的悬浮层,在一个芯片上打印和测试数百个这样的结构。穿孔和裂缝研究小组打印出的悬浮超材料类似于错综复杂的蜂巢状截面。每种材料都印有特定的三维微观结构,如重复八面体或多面体多边形的精确支架。每个重复单元的大小与一个红血球相当。由此产生的超材料比人的头发丝还要细。随后,研究人员以每秒 900 米(每小时 2000 多英里)的速度 - 完全在超音速范围内向这些结构发射玻璃微粒子,测试每种超材料的抗冲击能力。他们用相机捕捉了每次撞击,并逐帧研究了生成的图像,以了解射弹是如何穿透每种材料的。接下来,他们在显微镜下检查了这些材料,并比较了每次撞击的物理后果。波特拉说:"在建筑材料中,我们看到了撞击后小圆柱形弹坑的形态。但在固体材料中,我们看到了许多径向裂缝和被刨出的大块材料"。总之,研究小组观察到,发射的粒子在晶格超材料上造成了小的穿孔,而材料却保持完好无损。与此相反,当以相同的速度将相同的粒子发射到质量相等的非晶格固体材料中时,它们会产生大裂缝,并迅速扩散,导致材料破碎。因此,微结构材料能更有效地抵御超音速撞击以及多重撞击。尤其是印有重复八面体的材料似乎最坚硬。意见和未来方向"在相同的速度下,我们看到八面体结构更难断裂,这意味着单位质量的超材料能够承受的冲击力是块状材料的两倍,"波特拉说。"这告诉我们,有一些结构可以使材料变得更坚硬,从而提供更好的冲击保护"。展望未来,该团队计划利用新的快速测试和分析方法来确定新的超材料设计,希望能标记出可升级为更坚固、更轻便的防护装备、服装、涂层和镶板的架构。波特拉说:"最让我兴奋的是,我们可以在台式机上进行大量这些极端实验。这将大大加快我们验证新型高性能弹性材料的速度。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院的新型无钴有机电池材料将为电动汽车带来革命性变革

麻省理工学院的新型无钴有机电池材料将为电动汽车带来革命性变革 在一项新的研究中,研究人员表明,这种材料的生产成本远远低于含钴电池,其导电率与钴电池相似。研究人员报告说,这种新型电池的储电量也与钴电池相当,而且充电速度也比钴电池快。麻省理工学院 W.M. Keck 能源学教授 Mircea Dincă 说:"我认为这种材料可以产生很大的影响,因为它的效果非常好。它与现有技术相比已经很有竞争力,而且它可以节省大量成本,并避免目前用于电池的金属开采所带来的痛苦和环境问题。"Dincă是这项研究的资深作者,研究报告最近发表在《ACS Central Science》杂志上。23 岁的陈天阳博士和麻省理工学院前博士后哈里什-班达(Harish Banda)是论文的主要作者。其他作者包括麻省理工学院博士后王建德、麻省理工学院研究生朱利叶斯-奥本海姆(Julius Oppenheim)和博洛尼亚大学研究员亚历山德罗-弗朗切斯基(Alessandro Franceschi)。大多数电动汽车都由锂离子电池驱动,这种电池的充电原理是锂离子从一个正电极(称为阴极)流向一个负电极(称为阳极)。在大多数锂离子电池中,阴极都含有钴,这是一种具有高稳定性和高能量密度的金属。然而,钴也有很大的缺点。钴是一种稀缺金属,其价格会大幅波动,而且世界上大部分钴矿床都位于政局不稳的国家。钴的开采会造成危险的工作环境,并产生有毒废物,污染矿区周围的土地、空气和水源。"钴电池可以储存大量的能量,在性能方面也具备人们所关心的所有特性,但它们存在供应不广的问题,而且成本会随着商品价格而大幅波动。"Dincă说:"随着消费市场中电气化汽车的比例越来越高,成本肯定会越来越高。"由于钴有这样那样的缺点,因此人们进行了大量研究,试图开发替代电池材料。其中一种材料是磷酸铁锂(LFP),一些汽车制造商已开始在电动汽车中使用这种材料。尽管锂-铁-磷酸酯电池仍有实际用途,但其能量密度只有钴和镍电池的一半左右。另一种有吸引力的选择是有机材料,但迄今为止,大多数此类材料在导电性、存储容量和使用寿命方面都无法与含钴电池相媲美。由于导电率低,这类材料通常需要与聚合物等粘合剂混合,以帮助它们维持导电网络。这些粘合剂至少占整个材料的 50%,会降低电池的存储容量。大约六年前,在兰博基尼的资助下,Dincă的实验室开始进行一个项目,开发一种可为电动汽车提供动力的有机电池。在研究部分有机、部分无机的多孔材料时,Dincă和他的学生意识到,他们制造的一种完全有机的材料似乎是一种强导体。这种材料由多层 TAQ(双四氨基苯醌)组成,TAQ 是一种有机小分子,含有三个融合的六角环。这些层可以向各个方向延伸,形成类似石墨的结构。分子中含有称为醌和胺的化学基团,前者是电子库,后者有助于材料形成牢固的氢键。这些氢键使材料高度稳定,同时也非常不溶解。这种不溶性非常重要,因为它可以防止材料像某些有机电池材料那样溶解到电池电解液中,从而延长其使用寿命。Dincă 说:"有机材料降解的主要方法之一是溶解到电池电解液中,并进入电池的另一端,从而形成短路。如果使材料完全不溶解,这个过程就不会发生,因此我们可以在最少降解的情况下进行 2000 多个充电循环。Dincă对这种材料的测试表明,其导电性和存储容量与传统的含钴电池相当。此外,与现有电池相比,使用 TAQ 阴极的电池充放电速度更快,可加快电动汽车的充电速度。为了稳定有机材料并提高其附着在铜或铝制成的电池集流器上的能力,研究人员添加了纤维素和橡胶等填充材料。这些填料占整个阴极复合材料的比例不到十分之一,因此不会显著降低电池的存储容量。这些填料还能在电池充电时防止锂离子流入阴极,从而延长电池阴极的使用寿命。制造这种阴极所需的主要材料是一种醌前体和一种胺前体,它们作为商品化学品已经在市场上大量供应和生产。研究人员估计,组装这些有机电池的材料成本大约是钴电池成本的三分之一到二分之一。兰博基尼已经获得了这项技术的专利许可。Dincă 的实验室计划继续开发替代电池材料,并正在探索用钠或镁替代锂的可能性,因为钠或镁比锂更便宜、更丰富。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人