不用化石燃料冶炼钢铁:研究人员利用太阳能打破工业加热1000°C的障碍

不用化石燃料冶炼钢铁:研究人员利用太阳能打破工业加热1000°C的障碍 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 热捕捉器的主要部件是一个石英圆柱体。在实验中,它的温度达到了 1050 摄氏度,并在这种高温下发光。图片来源:苏黎世联邦理工学院/埃米利亚诺-卡萨提通讯作者、瑞士苏黎世联邦理工学院的埃米利亚诺-卡萨提(Emiliano Casati)说:"为了应对气候变化,我们需要从总体上实现能源的去碳化。人们往往只把电力当作能源,但事实上,大约一半的能源是以热能的形式使用的。"玻璃、钢铁、水泥和陶瓷是现代文明的核心,是建造从汽车发动机到摩天大楼等一切建筑的基本材料。然而,制造这些材料需要超过 1000°C 的高温,并严重依赖燃烧化石燃料来获取热量。这些行业的能耗约占全球能耗的 25%。研究人员利用太阳能接收器探索了一种清洁能源的替代方法,这种接收器通过成千上万个太阳跟踪镜来集中和制造热量。然而,这种技术很难将太阳能有效地传输到 1000°C 以上的温度。热捕捉器实验示意图。它由一根石英棒(内部)和一个陶瓷吸收器(外部)组成。太阳辐射从前部进入,热量在后部区域产生。资料来源:Casati E et al.为了提高太阳能接收器的效率,Casati 转而使用石英等半透明材料,这种材料可以捕获阳光这种现象被称为热捕获效应。研究小组制作了一个热捕获装置,将合成石英棒固定在不透明的硅片上作为能量吸收器。当他们将该装置暴露在相当于136个太阳发出的光的能量通量下时,吸收板的温度达到1050°C(1922°F),而石英棒的另一端则保持在600°C(1112°F)。Casati说:"以前的研究只能证明170°C(338°F)以下的热捕获效应。我们的研究表明,太阳热捕集不仅在低温下有效,而且远高于1000°C。这对于展示其在实际工业应用中的潜力至关重要。"研究小组还利用传热模型模拟了石英在不同条件下的热捕集效率。模型显示,在相同性能的情况下,热捕集可以在较低的浓度下达到目标温度,或者在相同浓度的情况下达到较高的热效率。Casati和他的同事们目前正在优化热捕获效应,并研究这种方法的新应用。到目前为止,他们的研究取得了可喜的成果。通过探索其他材料,如不同的液体和气体,他们能够达到更高的温度。研究小组还注意到,这些半透明材料吸收光或辐射的能力并不局限于太阳辐射。"能源问题是我们社会生存的基石,"Casati 说。"太阳能很容易获得,而且技术已经存在。为了真正推动行业采用,我们需要大规模地展示这项技术的经济可行性和优势。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

突破极限:串联太阳能电池转化效率超过20%

突破极限:串联太阳能电池转化效率超过20% 这项研究发表在 2024 年 3 月 4 日出版的《能源材料与器件》杂志上。光伏技术是一种利用太阳光并将其转化为电能的技术,因其提供清洁的可再生能源而广受欢迎。科学家们不断努力提高太阳能电池的功率转换效率,即效率的衡量标准。传统单结太阳能电池的功率转换效率已超过 20%。要使单结太阳能电池的功率转换效率达到肖克利-奎塞尔极限以上,需要更高的成本。然而,通过制造串联太阳能电池,可以克服单结太阳能电池的肖克利-奎塞尔极限。利用串联太阳能电池,研究人员可以通过将太阳能电池材料堆叠在一起获得更高的能源效率。研究小组利用一种名为硒化锑的半导体,致力于制造串联太阳能电池。过去对硒化锑的研究主要集中在单结太阳能电池的应用上。但研究小组知道,从带隙的角度来看,这种半导体可能被证明是串联太阳能电池的合适底部电池材料。"硒化锑是一种适用于串联太阳能电池的底部电池材料。然而,由于使用硒化锑作为底部电池的串联太阳能电池的报道很少,因此人们很少关注它的应用。"中国科学技术大学材料科学与工程学院教授陈涛说:"我们用它作为底部电池组装了一个具有高转换效率的串联太阳能电池,证明了这种材料的潜力。与使用单层半导体材料的单结太阳能电池相比,串联太阳能电池吸收阳光的能力更强。串联太阳能电池能将更多的太阳光转化为电能,因此比单结太阳能电池更节能。"演示概念验证串联太阳能电池,该电池由硒化锑和宽带隙过磷酸钙作为底部和顶部子电池吸收材料组成。通过优化顶部电池的透明电极和底部电池的制备工艺,该装置实现了超过 20% 的功率转换效率。来源:《能源材料与器件》,清华大学出版社研究小组制作了具有透明导电电极的过氧化物/硒化锑串联太阳能电池,以优化光谱响应。他们通过调整顶部电池透明电极层的厚度,获得了超过 17% 的高效率。他们通过引入双电子传输层,优化了硒化锑底部电池,实现了 7.58% 的功率转换效率。当他们用机械方法将顶部和底部电池组装成四端串联太阳能电池时,功率转换效率超过了 20.58%,高于独立子电池的功率转换效率。他们的串联太阳能电池具有出色的稳定性和无毒成分。陈说:"这项工作提供了一种新的串联器件结构,并证明硒化锑是一种很有前景的吸收材料,可用于串联太阳能电池的底部电池应用。"展望未来,研究小组希望努力开发集成度更高的双端串联太阳能电池,并进一步提高器件性能。"硒化锑的高稳定性为制备两端串联太阳能电池提供了极大的便利,这意味着它在与多种不同类型的顶层电池材料搭配时可能会取得良好的效果。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新材料可大幅提高太阳能电池板的效率

新材料可大幅提高太阳能电池板的效率 美国利哈伊大学的一个研究小组创造了一种材料,它可以大大提高太阳能电池板的效率。使用这种材料作为太阳能电池活性层的原型显示出 80% 的平均光电吸收率、很高的光激发载流子生成率以及前所未有的高达 190% 的外部量子效率 (EQE)这远远超过了硅基材料的肖克利-奎塞尔理论效率极限,并将光伏量子材料领域推向了新的高度。Chindeu Ekuma。资料来源:利哈伊大学物理学教授 Chinedu Ekuma 在《科学进展》(Science Advances)杂志上发表了他与利哈伊大学博士生 Srihari Kastuar 合作开发这种材料的论文。先进的材料特性这种材料的效率飞跃主要归功于其独特的"中间带态",即材料电子结构中的特定能级,使其成为太阳能转换的理想选择。这些态的能级在最佳子带间隙内,即材料能有效吸收阳光并产生电荷载流子的能量范围,约为 0.78 和 1.26 电子伏特。此外,这种材料在电磁波谱的红外线和可见光区域的高吸收率表现尤为出色。以 CuxGeSe/SnS 为活性层的薄膜太阳能电池示意图。资料来源:Ekuma 实验室/利哈伊大学在传统太阳能电池中,最大 EQE 为 100%,即每吸收一个太阳光光子,就能产生和收集一个电子。然而,过去几年中开发的一些先进材料和配置已证明能够从高能光子中产生和收集一个以上的电子,即 EQE 超过 100%。斯里哈里-卡斯图阿尔,利哈伊大学。资料来源:利哈伊大学虽然这种多重激子生成(MEG)材料尚未广泛商业化,但它们有可能大大提高太阳能发电系统的效率。在 Lehigh 开发的材料中,中间带态能够捕获传统太阳能电池通过反射和产热等方式损失的光子能量。材料开发与潜力研究人员利用"范德华间隙"(层状二维材料之间的原子级微小间隙)开发出了这种新型材料。这些间隙可以限制分子或离子,材料科学家通常利用它们来插入或"插层"其他元素,以调整材料特性。为了开发新型材料,利哈伊大学的研究人员在硒化锗(GeSe)和硫化锡(SnS)制成的二维材料层之间插入了零价铜原子。Ekuma 是计算凝聚态物理方面的专家,在对该系统进行了大量计算机建模并证明其理论前景后,他开发了这一原型作为概念验证。他说:"其快速反应和更高的效率有力地表明了铜掺杂GeSe/SnS作为一种量子材料在先进光伏应用中的使用潜力,为提高太阳能转换效率提供了一条途径。这是开发新一代高效太阳能电池的理想候选材料,将在满足全球能源需求方面发挥至关重要的作用。"虽然将新设计的量子材料整合到当前的太阳能系统中还需要进一步的研究和开发,但埃库马指出,用于制造这些材料的实验技术已经非常先进。随着时间的推移,科学家们已经掌握了将原子、离子和分子精确插入材料的方法。编译自:ScitechDaily ... PC版: 手机版:

封面图片

蔚山科学技术院研发的量子点太阳能电池再次打破转化效率纪录

蔚山科学技术院研发的量子点太阳能电池再次打破转化效率纪录 不过,它们最终可能在太阳能电池中发挥最大作用。大多数商用太阳能电池都是用大块材料作为光收集层,这意味着整个表面吸收相同的波长。但量子点可以有多种尺寸,分别聚焦于光谱的不同部分,从而提高潜在效率。另外,量子点的成本低廉,易于制造,甚至可以制成喷雾溶液。在这项新研究中,蔚山科学技术院(UNIST)的研究人员对配方进行了一些调整,以改进技术。用有机材料制成的量子点太阳能电池理论效率最高,但不幸的是,它们存在缺陷,在阳光和天气条件下稳定性较差,这对于设计成全天暴露在阳光下的设备来说并不理想。为了解决这个问题,这些太阳能电池通常用无机材料代替,但这也限制了它们的效率。UNIST 团队用有机过氧化物制成量子点,并开发出一种将量子点锚定在基底上的新方法,从而使量子点能够更紧密地靠在一起。这将效率从2020 年的 16.6% 提高到了创纪录的 18.1%。美国国家可再生能源实验室(NREL)对这一记录给予了独立认可。更妙的是,新型太阳能电池的稳定性要好得多。在正常条件下,它们可以保持 1200 小时的满血运行,而在 80 °C (176 °F)的高温条件下,它们可以保持 300 小时的效率。存放两年后,它们的性能也同样出色。量子点太阳能电池要赶上日常使用的硅太阳能电池还有很长的路要走,针对后者的研发已经领先了半个世纪,且正在迅速接近其理论最高效率。与此同时,量子点从 2010 年左右才真正进入实验室,当时的效率还不到 4%。在提高效率的同时,廉价和简单的制造工艺有助于扩大技术规模,制造出更广泛的光伏表面。这项研究发表在《自然-能源》杂志上。 ... PC版: 手机版:

封面图片

新型铜铟镓硒太阳能电池能效创纪录 转换效率高达23.64%

新型铜铟镓硒太阳能电池能效创纪录 转换效率高达23.64% 最新CIGS太阳能电池结构的电子显微镜分析。图片来源:《自然·能源》网站国际能源署数据显示,太阳能电池的部署量在全球范围内迅速增长,2022年太阳能发电量占全球电力超过6%。晶硅是太阳能电池中使用最广泛的材料,目前由晶硅制成太阳能电池最多可将逾22%的阳光转化为电力,这种太阳能电池成本低廉且性能比较稳定。研究人员希望以合理的生产成本获得30%以上的光电转换效率,由此开始关注CIGS等更高效的串联太阳能电池。但串联太阳能电池成本太高,迄今无法大规模生产和部署。薄膜太阳能电池中活性层的横截面,总厚度不超过 3 微米。利用隆德 MAX IV 设施测量的纳米 XRF,可以高精度地测量太阳能电池中基体元素和微量元素(本例中为铷)的浓度。资料来源:Marika Edoff最新研制出的CIGS太阳能电池包含一块玻璃板,玻璃板上覆盖了几个不同的层,每个层都具有特定功能。吸收阳光的材料由铜、铟、镓和硒化物组成,并添加了银和钠。材料被置于太阳能电池内,位于金属钼和透明的玻璃板之间。为使太阳能电池在分离电子方面尽可能高效,研究团队用氟化铷处理了CIGS层。研究人员表示,钠和铷这两种碱金属之间的平衡,以及CIGS层的组成是提高转换效率的关键。CIGS太阳能电池能效此前的世界纪录是23.35%,由日本Solar Frontier公司创造,再之前是德国巴登符腾堡太阳能和氢能源研究中心创下的纪录22.9%。 ... PC版: 手机版:

封面图片

科学家设计折叠与透明电池板的方案 重新构想太阳能利用的未来

科学家设计折叠与透明电池板的方案 重新构想太阳能利用的未来 最近,卡文迪什实验室和荷兰阿姆斯特丹 AMOLF 公司的一组科学家在对此进行研究时发现,以这种方式提高太阳能电池的效率比我们想象的要难,但他们也发现了其他途径,通过这些途径,也许可以提高地球上任何地方的太阳能捕获效率。研究人员想知道,太阳能电池这种将太阳光转化为电能的设备,是否可以进行调整,以便在世界上太阳光浓度可能较高的不同地区发挥更好的性能。为了研究这个问题,他们使用机器学习模型和神经网络(AI)来了解太阳辐射在地球不同地点的表现。剑桥大学麦克斯韦中心外的聚光装置照片。资料来源:剑桥大学卡文迪什实验室 Tomi Baikie 博士他们将这些数据整合到一个电子模型中,以计算太阳能电池的输出功率。通过模拟各种情况,他们可以预测太阳能电池在全球不同地点能产生多少能量。超越效率的创新解决方案然而,他们在《焦耳》(Joule)杂志上发表的研究结果却揭示了一个令人惊讶的转折。"让太阳能电池变得超级高效原来是非常困难的。因此,我们并不只是想把太阳能电池做得更好,而是想了一些其他办法来捕捉更多的太阳能,"该研究的第一作者、卡文迪什实验室和露西-卡文迪什学院研究员托米-拜基博士说。"这对社区来说可能真的很有帮助,给他们提供了不同的选择,让他们去思考,而不只是专注于让电池更有效地利用光"。想象一下,太阳能电池板可以像折纸一样弯曲和折叠,或者变得部分透明,从而与周围环境完美融合,并且易于安装。通过提高这些太阳能电池板的耐用性和多功能性,它们可以被集成到各种环境中,有望延长使用寿命并提高效率。世界各地聚光装置的模拟结果。资料来源:剑桥大学卡文迪什实验室 Tomi Baikie 博士"我们提出了一个不同的方案,可以让太阳能电池板在全球许多不同的地方都能很好地工作,"Baikie 说。"我们的想法是让它们变得灵活,有点透明/半透明,并且能够折叠起来。这样,太阳能电池板就能适用于各种地方。"此外,研究人员还提倡对太阳能捕获装置进行图案化处理,以优化它们的排列,最大限度地吸收阳光。这种方法有望改进太阳能电池阵列的设计,提高其利用太阳能的效率。"这种认识意味着我们现在可以专注于不同的事情,而不仅仅是让太阳能电池更好地工作。未来,我们将研究包括镶嵌图案在内的太阳能收集途径。"拜基总结说:"这就像一个拼图图案,可以帮助我们获取更多的太阳能。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员称新型光收集系统可吸收整个可见光范围内的光 彻底改变太阳能现状

研究人员称新型光收集系统可吸收整个可见光范围内的光 彻底改变太阳能现状 多年来,太阳能技术一直受到一些基本限制的制约。传统的硅基太阳能电池可以吸收整个可见光谱的光,这固然很好,但它们的吸收能力很"弱"。它们还需要很厚我们说的是微米级别才能吸收足够的光子来产生有意义的电能。增加的体积使它们更重、更贵,也更难与建筑物和车辆无缝集成。另一方面,由有机染料制成的薄膜太阳能电池既便宜又轻便,厚度仅为 100 纳米。但它们只能吸收太阳光谱的一小部分,这并不是一个理想的折衷方案。现在,维尔茨堡大学(University of Würzburg)的科学家们可能已经通过一种新的生物启发设计破解了这一难题。这项发表在《化学》(Chem)杂志上的研究重点介绍了一种被称为URPB的新系统,它以植物和细菌的光合触角为蓝本,能有效地捕捉阳光。不过,URPB 并没有依赖大自然的复杂机制,而是采用了一种更简单的结构四种不同的染料以精确的堆叠配置排列。由于排列得足够整齐,它可以捕捉紫外线、可见光和近红外波长的光,而且效率极高。这就是 URPB 名称的由来。URPB对应于每层可以吸收的四种波长的光:紫外线、红光、紫光和蓝光。在研究小组的测试中,该系统将整整 38% 的入射光能转化为有用的能量,这比单个染料本身所能做到的要好得多,单个染料的最大转化率仅为 3%。目前的太阳能电池技术正在迅速达到最高效率,而上述研究远非从电池中榨取更多电力的唯一尝试。例如,土耳其最近的一项研究分析了一种半球形光伏太阳能电池结构,与平面电池板相比,该结构吸收的光线最多可增加 66%。计算机模拟看起来很有希望,但还需要实际原型验证。在此之前的2023年,科学家们试图通过在传统硅太阳能电池上添加新的过氧化物层来提高其效率。这种化合物能捕捉不同波长的光,有可能将效率提高到 30% 以上这是在全球范围内提高太阳能可行性的关键门槛。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人