宇宙第一批恒星留下的独特耀斑可以被新一代太空望远镜探测到

宇宙第一批恒星留下的独特耀斑可以被新一代太空望远镜探测到 多年来,科学家们一直在寻找"第三族群"恒星的直接证据,这些恒星是宇宙大爆炸后几亿年点亮宇宙的第一代恒星。这些第一代恒星由早期宇宙的原始气体形成,在宇宙演化和后代恒星的发展过程中发挥了至关重要的作用。据预测,"第三族群"恒星在其他方面也与众不同。预计它们比地球太阳和其他更年轻的恒星质量更大、温度更高;它们的寿命也更短。然而,这些首批恒星尚未被观测到。研究人员说,找到它们的关键在于寻找它们留下的耀斑。约瑟夫-S-和索菲亚-S-弗鲁顿(Joseph S. and Sophia S. Fruton)天文学讲座教授、耶鲁大学文理学院(FAS)物理学教授普里亚姆瓦达-纳塔拉詹(Priyamvada Natarajan)说:"詹姆斯-韦伯太空望远镜(JamesWebb Space Telescope)最近探测到的第一批黑洞表明,它们也是与第一批恒星同时出现的。"纳塔拉詹说:"我们意识到,距离黑洞太近的群体III恒星被撕裂时产生的焰火应该可以被探测到。"艺术家描绘的潮汐扰动事件。图片来源:Ralf Crawford/太空望远镜科学研究所在这项新研究中,研究人员提出,如果一颗"第三族群"恒星遭遇黑洞,由此产生的"潮汐破坏事件"(TDE)黑洞将恒星撕裂将产生一个特别明亮的耀斑足够明亮和持久,足以跨越数十亿光年到达今天的地球。更重要的是,耀斑会有一个可识别的"特征",天文学家可以辨别出来。"由于高能光子从非常遥远的距离发出,耀斑的时间尺度会因宇宙膨胀而被拉长,"研究小组首席研究员、香港大学天文学家戴瑾说。"这些TDE耀斑将在很长一段时间内升起并衰减,这使它们有别于附近宇宙中太阳型恒星的TDE"。该研究的第一作者、香港大学的 Rudrani Kar Chowdhury 说,重要的是,耀斑的光波长也被拉长了。她说:"TDE发出的光学和紫外线在到达地球时会被转换成红外线波长。"这种红外光可以被探测到,美国国家航空航天局的两个旗舰任务 - 詹姆斯·韦伯太空望远镜和即将发射的南希·格雷斯·罗曼太空望远镜都有能力探测红外线发射即使是在很远的地方。"罗曼具有同时观测大面积天空和窥探早期宇宙深处的独特能力,这使它成为探测这些波普III TDE耀斑的一个很有前途的探测器,"Natarajan说。"这可能是我们推断第三族群恒星存在的唯一方法"。研究人员说,这种发现在未来十年是有可能实现的。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

詹姆斯·韦布空间望远镜探测到宇宙早期星系中存在碳

詹姆斯·韦布空间望远镜探测到宇宙早期星系中存在碳   研究示意图。图片来源:物理学家组织网早期宇宙几乎完全由最简单的氢元素,以及少量氦和锂组成。而现在观察到的宇宙中所有其他元素都在恒星内部形成。当恒星爆炸成超新星时,产生的元素在宿主星系内循环,孕育下一代恒星。随着每一代新恒星和“星尘”诞生,越来越多金属形成,宇宙进化到可以支持地球等岩石行星的存在以及生命的繁衍生息。在最新研究中,科学家使用韦布望远镜观测了一个宇宙大爆炸后仅3.5亿年就已经存在的星系,这是迄今科学家探测到的最遥远的星系之一。他们使用韦布的近红外光谱仪,将来自该年轻星系的光分解成一系列颜色。鉴于不同元素会在星系光谱中留下不同的化学“指纹”,科学家由此可确定其化学成分。光谱分析“可靠地”检测到了碳,“初步”检测到了氧和氖。研究人员表示,此前认为宇宙大爆炸后约10亿年碳才开始大量聚集,但他们发现碳形成得更早。这意味着第一批恒星的运行方式可能非常不同。鉴于碳是人类已知生命的基础,生命在宇宙中进化的时间可能比现在认为的早得多。 ... PC版: 手机版:

封面图片

韦伯望远镜探测到迄今发现最远的活跃超大质量黑洞

韦伯望远镜探测到迄今发现最远的活跃超大质量黑洞 科学家们利用韦伯望远镜对GN-z11进行研究,还发现了一些诱人的证据,证明在这个偏远星系的外围存在着群体III恒星。这些难以捉摸的恒星是宇宙中第一批发光的恒星,纯粹由氢和氦组成。虽然从未对这类恒星进行过明确的探测,但科学家们知道它们一定存在。现在,有了韦伯望远镜,发现它们似乎比以往任何时候都更接近了。这幅由韦伯的近红外相机(NIRCam)仪器拍摄的图像显示了 GOODS-North 星系场的一部分。右下方的拉线突出显示了GN-z11星系,它出现的时间距离宇宙大爆炸刚刚过去4.3亿年。图像显示了一个延伸部分,追踪着 GN-z11 宿主星系,以及一个中心源,其颜色与黑洞周围吸积盘的颜色一致。资料来源:NASA、ESA、CSA、STScI、Brant Robertson(加州大学圣克鲁兹分校)、Ben Johnson(剑桥大学天文学院)、Sandro Tacchella(剑桥大学)、Marcia Rieke(亚利桑那大学)、Daniel Eisenstein(剑桥大学天文学院)美国国家航空航天局(NASA)詹姆斯-韦伯太空望远镜(James Webb Space Telescope)的两个研究小组深入时空,研究了异常明亮的星系 GN-z11。这个星系最初是由美国国家航空航天局的哈勃太空望远镜探测到的,它是迄今为止观测到的最年轻、最遥远的星系之一,它是如此明亮,以至于科学家们都很难理解其中的原因。现在,GN-z11 透露了它的一些秘密。一个利用韦伯望远镜研究 GN-z11 的小组发现了第一个明确的证据,证明该星系的中央有一个超大质量黑洞,正在快速吸积物质。他们的发现使这个星系成为迄今为止发现的最远的活跃超大质量黑洞。英国剑桥大学卡文迪什实验室和卡弗里宇宙学研究所的首席研究员罗伯托-马约利诺解释说:"我们发现了超大质量黑洞附近常见的极致密气体。这些是GN-z11所在的黑洞正在吞噬物质的第一个明确信号。"利用韦伯望远镜,研究小组还发现了通常在吸积型超大质量黑洞附近观测到的电离化学元素的迹象。此外,他们还发现该星系正在释放出一股非常强大的风。这种高速风通常是由与剧烈吸积的超大质量黑洞相关的过程驱动的。同样来自卡文迪什实验室和卡弗里研究所的研究人员汉娜-于布勒(Hannah Übler)说:"韦伯的近红外相机(NIRCam)发现了一个延伸部分,它追踪着宿主星系,以及一个中央紧凑源,其颜色与黑洞周围吸积盘的颜色一致。"这些证据共同表明,GN-z11 内有一个 200 万太阳质量的超大质量黑洞,它正处于吞噬物质的非常活跃阶段,这也是它如此明亮的原因。第二个小组也是由马约利诺领导的,他们利用韦伯望远镜的近红外摄谱仪(NIRSpec),在围绕着GN-z11的光环中发现了一个气态氦团。马约利诺说:"除了氦之外,我们看不到其他任何东西,这表明这个团块一定是相当原始的。这是理论和模拟在这些时代特别大质量星系附近所预料到的在光晕中应该有原始气体的小块存留,这些气体可能会坍缩并形成群体III星团。"寻找前所未见的第三族群恒星几乎完全由氢和氦形成的第一代恒星是现代天体物理学最重要的目标之一。这些恒星预计质量很大、光度很强、温度很高。它们的预期特征是存在电离氦,而不存在比氦重的化学元素。第一批恒星和星系的形成标志着宇宙历史的根本性转变,在此期间,宇宙从黑暗和相对简单的状态演变成我们今天看到的高度结构化和复杂的环境。在未来的韦伯观测中,Maiolino、Übler 和他们的团队将对 GN-z11 进行更深入的探索,并希望加强对可能正在其光环中形成的 Population III 恒星的研究。《天文学与天体物理学》(Astronomy & Astrophysics)已接受发表关于GN-z11光环中原始气体团块的研究成果。对GN-z11黑洞的研究结果于2024年1月17日发表在《自然》杂志上。这些数据是作为JWST高级深河外星系巡天(JADES)的一部分获得的,JADES是NIRCam和NIRSpec团队的一个联合项目。詹姆斯-韦伯太空望远镜是世界上最重要的太空科学观测站。韦伯正在揭开太阳系的神秘面纱,眺望其他恒星周围的遥远世界,探索宇宙的神秘结构和起源以及我们在宇宙中的位置。韦伯望远镜是一项国际计划,由美国国家航空航天局(NASA)领导,其合作伙伴包括欧洲航天局(ESA)和加拿大航天局(Canadian Space Agency)。编译自:ScitechDaily ... PC版: 手机版:

封面图片

韦伯太空望远镜揭示关键恒星形成区N79的细节

韦伯太空望远镜揭示关键恒星形成区N79的细节 詹姆斯-韦伯太空望远镜(James Webb Space Telescope)捕捉到了位于大麦哲伦星云中一个充满活力的恒星形成区N79的图像,凸显了它作为年轻版狼蛛星云的潜力。这次观测通过中红外光揭示了该区域发光的气体和尘埃,为了解早期宇宙的恒星形成过程和化学成分提供了宝贵的信息。图片来源:ESA/Webb、NASA & CSA、O. Nayak、M. MeixnerN79是一个巨大的恒星形成复合体,位于一般未被探索的LMC西南区域,跨度大约1630光年。N79通常被认为是年轻版的30 Doradus(又称塔兰图拉星云),后者是韦伯最近的另一个目标。研究表明,在过去的 50 万年里,N79 的恒星形成效率要比30 Doradus高出 2 倍。这幅特殊的图像以三个巨型分子云团中的一个为中心,被称为 N79 South(简称 S1)。围绕着这个明亮物体的明显"星芒"图案是一系列衍射尖峰。所有像韦伯望远镜这样使用镜面收集光线的望远镜,都会因为望远镜的设计而产生这种人工痕迹。在韦伯望远镜中,由于韦伯望远镜的 18 个主镜部分呈六边形对称,因此出现了六个最大的衍射尖峰。只有在非常明亮、紧凑的天体周围才会出现这样的图案,因为所有的光线都来自同一个地方。大多数星系,即使在我们眼中看起来非常小,也比单颗恒星更暗、更分散,因此不会出现这种图案。在中红外成像仪捕捉到的较长的光波长下,韦伯拍摄到的 N79 星展现了该区域发光的气体和尘埃。这是因为中红外光能够揭示云层深处的情况(而较短波长的光会被星云中的尘粒吸收或散射)。一些仍然嵌入的原恒星也出现在这个区域。天文学家之所以对这样的恒星形成区域感兴趣,是因为它们的化学成分与宇宙只有几十亿年历史、恒星形成达到顶峰时观测到的巨大恒星形成区域的化学成分相似。银河系中的恒星形成区并没有像N79那样以如此迅猛的速度产生恒星,它们的化学成分也不尽相同。韦伯望远镜现在为天文学家提供了一个机会,将对 N79 星区恒星形成的观测结果与望远镜对宇宙早期遥远星系的深入观测结果进行对比。对N79的这些观测是韦伯计划的一部分,该计划正在研究形成中恒星的周星盘和包层在不同质量范围和不同演化阶段的演化情况。韦伯的灵敏度将使科学家们能够首次探测到质量与太阳相近的恒星周围的行星形成尘埃盘,这些恒星位于 LMC 的距离上。该图像包括蓝色的 7.7 微米光、青色的 10 微米光、黄色的 15 微米光和红色的 21 微米光(分别为 770W、1000W、1500W 和 2100W 滤光片)。 ... PC版: 手机版:

封面图片

哈勃太空望远镜观测到12个相互作用的星系 碰撞引发了恒星的形成而不是毁灭

哈勃太空望远镜观测到12个相互作用的星系 碰撞引发了恒星的形成而不是毁灭 美国国家航空航天局的哈勃太空望远镜观测到了12个相互作用的星系,发现了富含气体、尘埃和恒星的长潮汐尾迹,沿潮汐尾迹发现了425个新生恒星簇。这些星团每个都包含多达 100 万颗蓝色的新生恒星,它们是星系碰撞的结果,星系碰撞引发了恒星的形成而不是毁灭。从这张哈勃太空望远镜拍摄的图片中可以看到,AM 1054-325 星系在邻近星系的引力作用下,从正常的薄饼状螺旋形状扭曲成了 S 形。这样的一个后果是,新生的恒星群沿着一条延伸数千光年的潮汐尾迹形成,就像一串珍珠。它们的形成是由于气体结在引力作用下坍缩,从而在每个星团中产生了大约 100 万颗新生恒星。资料来源:NASA、ESA、STScI、Jayanne English(马尼托巴大学)与你的想象相反,星系碰撞并不会摧毁恒星。事实上,粗暴和翻滚的动力学引发了新一代恒星的诞生,并可能伴随着行星的诞生。现在,美国国家航空航天局的哈勃太空望远镜已经锁定了12个相互作用的星系,这些星系有着长长的、像蝌蚪一样的潮汐尾巴,尾巴上有气体、尘埃和大量的恒星。哈勃望远镜的锐利度和对紫外线的敏感度发现了这些潮汐尾巴上的 425 个新生恒星星团,看上去就像一串串节日彩灯。每个星团包含多达 100 万颗蓝色的新生恒星。潮汐尾部的星系团已经存在了几十年。当星系相互作用时,引力潮汐力会拉出长长的气体和尘埃流。触须星系和老鼠星系就是两个广为人知的例子,它们都有狭长的手指状突起。一个天文学家小组结合新的观测数据和档案数据,得到了潮汐尾部星团的年龄和质量。他们发现,这些星团非常年轻只有1000万年的历史。而且它们似乎是以同样的速度沿着绵延数千光年的尾巴形成的。"在尾部看到大量年轻天体是个惊喜。它告诉我们很多关于星团形成效率的信息,"第一作者、弗吉尼亚州阿什兰市伦道夫-麦肯学院的迈克尔-罗德鲁克说。"有了潮汐尾部,你就会建立起新一代的恒星,否则这些恒星可能不会存在"。这些尾巴看起来就像是星系的旋臂,并将其伸向太空。旋臂的外部像太妃糖一样被一对相互作用的星系之间的引力拉扯着。在星系合并之前,星系中含有丰富的分子氢尘埃云,这些尘埃云可能一直处于惰性状态。但是,这些氢云在碰撞过程中受到了挤压和撞击。这就把氢压缩到了一定程度,从而引发了一场恒星诞生的风暴。这些被挤出的星团的命运还不确定。它们可能在引力作用下保持完整,进化成球状星团就像那些在银河系平面外运行的星团一样。或者,它们可能会分散开来,在宿主星系周围形成一个恒星光环,或者被抛弃,成为星系间的流浪恒星。在宇宙早期,星系之间的碰撞更为频繁,这种串珠状恒星形成可能更为常见。哈勃观测到的这些附近的星系是很久以前发生的事情的代表,因此是研究遥远过去的实验室。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

欧空局XMM-牛顿号天文望远镜探测到黑洞风阻碍了恒星的形成

欧空局XMM-牛顿号天文望远镜探测到黑洞风阻碍了恒星的形成 这幅艺术家的作品展示了从马卡里安 817 星系中心喷出的超高速风。这些风以每小时数百万公里的速度从广阔的太空区域中清除星际气体。没有了这些气体,星系就无法形成新的恒星,星系中心的黑洞也就没有什么可吃的了。图片来源:欧空局每个大星系的中心都有一个超大质量黑洞,它巨大的引力从周围吸入气体。当气体向内盘旋时,会在黑洞周围形成一个扁平的"吸积盘",并在那里发热和发光。随着时间的推移,最靠近黑洞的气体越过了不归点,被吞噬殆尽。然而,黑洞只会吞噬一部分向其旋转的气体。在环绕黑洞的过程中,一些物质会被甩回太空,就像一个蹒跚学步的孩子会把盘子里的东西打翻一样。在更戏剧性的情况下,黑洞会把整个餐桌掀翻:吸积盘中的气体以极快的速度向四面八方飞散,以至于周围的星际气体都被清空了。这不仅剥夺了黑洞的食物,还意味着在大片区域内无法形成新的恒星,从而改变了星系的结构。耀眼的蓝色恒星环绕着这个螺旋星系明亮、活跃的核心。它被称为马卡里安 817,位于 4.3 亿光年外的天龙座北部。在远离中心的地方,这个星系显示出强烈的恒星形成区,以及沿着旋臂的星际尘埃暗带。银河系中心的怪兽黑洞的质量是太阳的 4000 万倍。它被一个巨大的物质圆盘包围着,超大质量黑洞正以每小时数百万公里的速度向太空喷射物质。这可以从银河系中心闪耀的明亮白光中看到。这张 NASA/ESA 哈勃太空望远镜图片是 2009 年 8 月 2 日用广角相机 3 拍摄的。图片来源:NASA、ESA 和哈勃 SM4 ERO 小组前所未有的观察在此之前,这种超快的"黑洞风"只在极其明亮的吸积盘中被探测到,因为吸积盘吸积物质的能力已经达到极限。这一次,XMM-牛顿在一个非常普通的星系中探测到了超快的风,可以说它"只是在吃零食"。"如果把风扇开到最大,你可能会预料到风速会非常快。在我们研究的这个名为马尔卡里安817的星系中,风扇的功率设置较低,但仍然产生了能量惊人的风。"本科生研究员米兰达-扎克(密歇根大学)指出,她在这项研究中发挥了核心作用。"观测到超高速风是非常罕见的,而探测到具有足够能量来改变其宿主星系特征的风就更少见了。马尔卡里安817在并不特别活跃的情况下,产生这些风的时间长达一年左右,这一事实表明,黑洞对其宿主星系的重塑可能远远超出人们的想象,"合著者、意大利罗马特雷大学天文学家埃利亚斯-卡蒙(Elias Kammoun)补充说。XMM-牛顿(X-射线多镜任务)太空望远镜的艺术效果图。图片来源:D. Ducros; ESA/XMM-Newton, CC BY-SA 3.0 IGO被风阻挡的 X 射线活跃的星系中心会发出包括 X 射线在内的高能量光线。马卡里安 817 让研究人员眼前一亮,因为它变得异常安静。米兰达利用美国宇航局的斯威夫特天文台观测了这个星系:"X射线信号如此微弱,以至于我确信自己做错了什么!"利用欧空局更灵敏的X射线望远镜XMM-牛顿进行的后续观测揭示了真实情况:来自吸积盘的超高速风就像一块裹尸布,挡住了从黑洞周围(称为日冕)发出的X射线。这些测量结果得到了美国宇航局NuSTAR望远镜观测结果的支持。对 X 射线测量结果的详细分析显示,马尔卡里安 817 的中心并没有发出一"股"气体,而是在吸积盘的广大区域内产生了一股狂风。这股风暴持续了数百天,至少由三种不同的成分组成,每种成分的运动速度都是光速的几分之一。这幅艺术家的作品展示了从马卡里安 817 星系中心喷出的超高速风。这些风以每小时数百万公里的速度从广阔的太空区域中清除星际气体。没有了这些气体,星系就无法形成新的恒星,星系中心的黑洞也就没有什么可吃的了。插图显示了银河系中心的情况。一个超大质量黑洞从周围吸入气体,形成一个炙热、明亮的"吸积盘"(橙色)。造成风(白色)的原因是圆盘内的磁场,它以难以置信的高速将粒子抛向四面八方。这些风有效地阻挡了黑洞周围极热等离子体(称为日冕)发出的 X 射线(蓝色)。这解决了我们在理解黑洞和黑洞周围星系如何相互影响方面的一个未解之谜。包括银河系在内的许多星系,其中心周围似乎都有大片区域,但在这些区域中却很少有新恒星形成。这可以用黑洞风清除恒星形成气体来解释,但这只有在黑洞风的速度足够快、持续时间足够长,并且是由具有典型活动水平的黑洞产生的情况下才可行。"黑洞研究中的许多悬而未决的问题都需要通过长时间的观测来捕捉重要事件。这凸显了XMM-牛顿任务对未来的极端重要性。"欧空局XMM-牛顿项目科学家诺伯特-沙特尔(Norbert Schartel)说:"没有其他任务能够将高灵敏度和长时间、不间断观测的能力结合起来。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯太空望远镜捕捉到双星形成的“指纹”图案

韦伯太空望远镜捕捉到双星形成的“指纹”图案 美国国家航空航天局(NASA)发布了由韦伯太空望远镜拍摄到的双星在太空中形成“指纹”的图像。这个罕见的宇宙景象由恒星及其伴星产生的尘埃环组成。 这对双星组合距离地球5000多光年,统称为Wolf-Rayet 140。当Wolf-Rayet 140中的两颗恒星靠近时,它们的恒星风会相撞压缩气体并形成一个尘埃环。这两颗恒星的运行轨道大约每8年聚集一次,便产生一层尘埃环。这个像“指纹”图案的宇宙景象由至少17个同心尘埃环组成。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人