人工智能分析类型题光谱数据 帮助发现百余种罕见的宇宙中性碳吸收体

人工智能分析类型题光谱数据 帮助发现百余种罕见的宇宙中性碳吸收体 地面上的斯隆数字巡天望远镜捕捉到了大量来自早期宇宙的类星体光谱。经过训练的人工智能深度神经网络首次在这些类星体光谱数据中发现了由早期星系冷介质产生的创纪录的弱中性碳吸收线探测器。最近,研究人员利用深度学习神经网络在斯隆数字巡天III(SDSS-III)计划发布的类星体光谱数据中搜索罕见的弱信号。通过引入一种探索星系形成和演化的新方法,研究小组展示了人工智能(AI)在识别天文大数据中罕见弱信号方面的潜力。这项研究最近发表在《英国皇家天文学会月刊》(Monthly Notices of the Royal Astronomical Society)上,由中国科学院上海天文台葛健教授领导的国际团队完成。来自宇宙中带有尘埃的冷气体的"中性碳吸收线"是研究星系形成和演化的重要探测器。然而,中性碳吸收线的信号很弱,而且极其罕见。天文学家一直在努力使用传统的相关方法在大质量类星体光谱数据集中探测这些吸收线。"这就像大海捞针。"葛健教授说。2015年,在SDSS早先发布的数万颗类星体光谱中发现了66个中性碳吸收体,这是获得的样本数量最多的一次。在这项研究中,葛教授团队根据实际观测数据,设计并训练了大量模拟中性碳吸收线样本的深度神经网络。通过将这些训练有素的神经网络应用于SDSS-III数据,研究小组发现了107个极其罕见的中性碳吸收体,比2015年获得的样本数量翻了一番,并探测到了比以前更多的微弱信号。通过堆叠众多中性碳吸收体的光谱,研究小组大大提高了探测各种元素丰度的能力,并直接测量了尘埃造成的气体中金属损失。研究结果表明,这些含有中性碳吸收器探测器的早期星系经历了快速的物理和化学演化,当时宇宙的年龄只有大约30亿年(目前宇宙的年龄为138亿年)。这些星系正在进入大麦哲伦云(LMC)和银河系(MW)之间的演化状态,产生了大量金属,其中一些金属结合成尘埃粒子,导致了观测到的尘埃变红效应。这一发现独立地证实了詹姆斯-韦伯太空望远镜(JWST)最近的发现,该望远镜在宇宙中最早的恒星中探测到了类似钻石的碳尘,这表明一些星系的演化速度比以前预期的要快得多,对现有的星系形成和演化模型提出了挑战。与通过星系发射光谱进行研究的 JWST 不同,这项研究通过观测类星体的吸收光谱来研究早期星系。应用训练有素的神经网络来寻找中性碳吸收体,为未来研究宇宙和星系的早期演化提供了新的工具,是对 JWST 研究方法的补充。"有必要开发创新的人工智能算法,能够快速、准确、全面地探索海量天文数据中的罕见微弱信号。"葛教授说。团队的目标是将这项研究中引入的方法推广到图像识别中,通过提取多种相关结构来创建人工"多结构"图像,从而实现对微弱图像信号的高效训练和检测。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

詹姆斯·韦布空间望远镜探测到宇宙早期星系中存在碳

詹姆斯·韦布空间望远镜探测到宇宙早期星系中存在碳   研究示意图。图片来源:物理学家组织网早期宇宙几乎完全由最简单的氢元素,以及少量氦和锂组成。而现在观察到的宇宙中所有其他元素都在恒星内部形成。当恒星爆炸成超新星时,产生的元素在宿主星系内循环,孕育下一代恒星。随着每一代新恒星和“星尘”诞生,越来越多金属形成,宇宙进化到可以支持地球等岩石行星的存在以及生命的繁衍生息。在最新研究中,科学家使用韦布望远镜观测了一个宇宙大爆炸后仅3.5亿年就已经存在的星系,这是迄今科学家探测到的最遥远的星系之一。他们使用韦布的近红外光谱仪,将来自该年轻星系的光分解成一系列颜色。鉴于不同元素会在星系光谱中留下不同的化学“指纹”,科学家由此可确定其化学成分。光谱分析“可靠地”检测到了碳,“初步”检测到了氧和氖。研究人员表示,此前认为宇宙大爆炸后约10亿年碳才开始大量聚集,但他们发现碳形成得更早。这意味着第一批恒星的运行方式可能非常不同。鉴于碳是人类已知生命的基础,生命在宇宙中进化的时间可能比现在认为的早得多。 ... PC版: 手机版:

封面图片

极速宇宙风:最新天文研究解释黑洞如何推动星系演化

极速宇宙风:最新天文研究解释黑洞如何推动星系演化 类星体风(浅蓝色)从超大质量黑洞周围的吸积盘(橘红色)上发射出来的艺术家印象图。图片来源:NASA/CXC/M.Weiss, Catherine Grier and the SDSS collaboration宇宙动力学:星系中的气体加速一个遥远星系中的气体云正被星系中心的超大质量黑洞发出的爆炸性辐射以每秒超过10000英里的速度越来越快地推向邻近的恒星。这一发现有助于阐明活动黑洞是如何通过刺激或扼杀新恒星的发展来不断塑造星系的。威斯康星大学麦迪逊分校天文学教授凯瑟琳-格里尔(Catherine Grier)和应届毕业生罗伯特-惠特利(Robert Wheatley)领导的研究小组利用多年来从类星体(一种特别明亮和湍流的黑洞,位于数十亿光年外的宝瓶座)收集的数据揭示了这种加速气体。他们在麦迪逊举行的美国天文学会第244次会议上展示了他们的发现。科学家认为黑洞位于大多数星系的中心。类星体是一种超大质量黑洞,周围环绕着被黑洞巨大引力拉入的物质盘。类星体风(浅蓝色)从超大质量黑洞周围的吸积盘(橘红色)上发射出来的图像。右侧插图是来自类星体 SBS 1408+544 的两个光谱,显示了吸收光的左移,揭示了类星体风推动气体加速的过程。资料来源:NASA/CXC/M.Weiss, Catherine Grier and the SDSS collaboration类星体照明机制"圆盘中的物质一直在向黑洞坠落,这种拉扯的摩擦力会加热圆盘,使它变得非常非常热,非常非常亮,"格里尔说。"这些类星体真的很亮,由于从圆盘内部到远处的温度范围很大,它们的辐射几乎覆盖了所有的电磁波谱"。明亮的光线使类星体几乎和宇宙一样古老(多达 130 亿光年之远),其辐射范围之广使其对天文学家探测早期宇宙特别有用。类星体 SBS 1408+544 的图像,十字准线中心的蓝点。图片来源:Jordan Raddick 和 SDSS 合作小组黑洞风的观测启示研究人员利用斯隆数字巡天计划(Sloan Digital Sky Survey)现在称为"黑洞映射器混响绘图项目"(Black Hole Mapper Reverberation Mapping Project)的一项计划收集到的八年多来对一颗名为 SBS 1408+544 的类星体的观测数据进行了研究。他们通过发现类星体中消失的光被气体吸收的光来追踪由气态碳组成的风。但是,SBS 1408+544 的光影并没有在光谱中表示碳的正确位置被吸收,而是随着每一次对 SBS 1408+544 的观察,光影都会偏离原点更远。惠特利说:"这种变化告诉我们,气体正在快速移动,而且速度一直在加快。风在加速,因为它受到从吸积盘上喷出的辐射的推动。"包括格里尔在内的科学家曾表示,他们以前观测到过来自黑洞吸积盘的加速风,但这一说法尚未得到更多观测数据的支持。新的结果来自近十年来对SBS 1408+544进行的约130次观测,这使得研究小组能够以极高的置信度确定速度的增加。黑洞风对银河系演化的影响天文学家对从类星体中挤出气体的风很感兴趣,因为这可能是超大质量黑洞影响其周围星系演化的一种方式。惠特利说:"如果它们的能量足够大,风可能会一直吹到宿主星系,在那里它们可能会产生重大影响。"根据不同的情况,类星体的风可以提供压力,将气体挤压在一起,加速宿主星系中恒星的诞生。或者,它可能会冲走这些燃料,阻止潜在恒星的形成。"超大质量黑洞很大,但与它们所在的星系相比真的很小,"格里尔说,他的工作得到了美国国家科学基金会的支持。"但这并不意味着它们不能相互'对话',这是一个黑洞与另一个黑洞对话的一种方式,我们在模拟这类黑洞的影响时必须考虑到这一点"。关于 SBS 1408+544 的研究报告于 6 月 11 日发表在《天体物理学报》上。 ... PC版: 手机版:

封面图片

研究人员在类星体宿主星系中发现了恒星形成受抑制的证据

研究人员在类星体宿主星系中发现了恒星形成受抑制的证据 类星体研究取得突破由北海道大学的德拉甘-萨拉克(Dragan Salak)助理教授、筑波大学的桥本拓也(Takuya Hashimoto)助理教授和早稻田大学的井上明夫(Akio Inoue)教授领导的研究小组首次发现了宇宙早期类星体宿主星系中的分子气体外流抑制恒星形成的证据。他们利用智利阿塔卡马大型毫米波/亚毫米波阵列(ALMA)进行的观测结果发表在《天体物理学报》上。从类星体 J2054-0005 喷出的分子气体的艺术印象。资料来源:ALMA (ESO/NAOJ/NRAO)分子气体在星系中的作用分子气体对恒星的形成至关重要。作为恒星形成的主要燃料,星系内无处不在的高浓度分子气体会导致大量恒星的形成。分子外流将这些气体喷射到星系际空间的速度快于恒星形成所消耗的速度,从而有效地抑制了类星体所在星系中恒星的形成。萨拉克解释说:"理论研究表明,分子气体外流从早期就在星系的形成和演化过程中发挥着重要作用,因为它们可以调节恒星的形成。类星体是能量特别高的来源,因此我们预计它们可能会产生强大的外流"。一组正在观测夜空的 ALMA 12 米天线。本研究使用 12 米天线进行观测。资料来源:ESO/Y.Beletsky发现分子气体外流研究人员观测到的类星体 J2054-0005 具有非常高的红移它和地球之间的移动速度显然非常快。桥本说:"J2054-0005 是遥远宇宙中最亮的类星体之一,因此我们决定把这个天体作为研究强大外流的绝佳候选天体。研究人员利用 ALMA 观测了类星体的分子气体外流。作为世界上唯一具有探测早期宇宙中分子气体外流的灵敏度和频率覆盖范围的望远镜,ALMA 是这项研究的关键。"谈到研究中使用的方法,Salak 评论道:"外流分子(OH)气体是通过吸收发现的。这意味着我们观测到的微波辐射并非直接来自OH分子;相反,我们观测到的辐射来自明亮的类星体吸收意味着OH分子恰好吸收了类星体的部分辐射。因此,这就像是通过看到气体在光源前投下的'影子'来揭示气体的存在"。类星体流出的分子气体包括羟基(OH)(上图)。由于分子气体向观测者方向运动,吸收光谱中的羟基峰(底部,蓝色虚线)出现在较短的波长上(蓝色实线),这种现象被称为多普勒效应。资料来源:ALMA(ESO/NAOJ/NRAO),修改自 Dragan Salak 等人,《天体物理学杂志》。2024 年 2 月 1 日对星系演化的影响这项研究的发现首次有力地证明了类星体宿主星系存在强大的分子气体外流,并对早期宇宙时代的星系演化产生影响。"分子气体是星系的重要组成部分,因为它是恒星形成的燃料,"Salak 总结道。"我们的研究结果表明,类星体能够通过将分子气体喷射到星系际空间来抑制其宿主星系中恒星的形成。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

黑洞在宇宙大爆炸后不到十亿年形成类星体

黑洞在宇宙大爆炸后不到十亿年形成类星体 早期宇宙中似乎不可能存在超大质量黑洞,这已经是个问题了;詹姆斯-韦伯太空望远镜发现了更早的超大质量黑洞星系,这只会让问题变得更糟。在最新的例子中,研究人员利用韦伯望远镜描述了一个由超大质量黑洞驱动的类星体,它存在于宇宙大爆炸后大约7.5亿年。它看起来正常得令人震惊。类星体是宇宙中最亮的天体,由主动进食的超大质量黑洞提供能量。它们周围的星系为它们提供了足够的物质,使它们形成了明亮的吸积盘和强大的喷流,两者都会释放出大量的辐射。它们通常有一部分被尘埃笼罩,尘埃吸收了黑洞释放的部分能量后会发光。这些类星体发出的辐射量非常大,最终会把附近的一些物质完全赶出星系。因此,早期宇宙中存在的这些特征将告诉我们,超大质量黑洞不仅存在于早期宇宙中,而且还与星系融为一体,就像近代的星系一样。但是要研究它们却非常困难。首先,我们发现的超大质量黑洞并不多;只有九颗类星体可以追溯到 8 亿年前的宇宙。由于距离太远,很难分辨出它们的特征,而且宇宙膨胀引起的红移将许多元素的强烈紫外线辐射带到了红外线深处。然而,韦伯望远镜是专门为探测早期宇宙中的天体而设计的,它对这种辐射出现的红外线波长非常敏感。因此,新的研究是基于将韦伯望远镜对准九个早期类星体中第一个被发现的类星体J1120+0641。它看起来并没有什么与众不同,或者至少很像宇宙历史上最近时期的类星体。研究人员对类星体产生的连续辐射进行了分析,发现有明显迹象表明,类星体被嵌入了一个炙热的、布满尘埃的物质甜甜圈中,就像在后来的类星体中看到的那样。这种尘埃的温度略高于一些较新的类星体,但这似乎是这些天体在宇宙历史早期阶段的共同特征。来自吸积盘的辐射在发射光谱中也很明显。通过各种方法估算出的黑洞质量值是太阳质量的109倍,这显然是超大质量黑洞的范畴。还有证据表明,从某些辐射的轻微蓝移来看,类星体正在以大约每秒 350 公里的速度向外喷射物质。有几个奇怪的现象。一是物质似乎还在以每秒约 300 公里的速度向内坠落。这可能是由于吸积盘中的物质远离我们而旋转造成的。但如果是这样的话,在吸积盘的另一侧向我们旋转的物质也应该与之相匹配。这种现象在非常早期的类星体中也曾出现过几次,但研究人员承认这种效应的物理起源尚不清楚。他们提出的一种解释是,整个类星体都在移动,由于早先与另一个超大质量黑洞合并,类星体被震出了星系中心的位置。另一个奇怪的现象是,高度电离碳的外流速度也非常快,大约是类星体后期外流速度的两倍。这种情况以前也出现过,但也没有任何解释。尽管有些奇怪,但这个天体看起来很像近代的类星体,观测结果表明,尘埃环和(吸积盘)的复杂结构可以在宇宙大爆炸后不到 760 Myr 的时间内在(超大质量黑洞)周围建立起来。同样,这也是个问题,因为它表明在宇宙历史的早期,就有一个超大质量黑洞与其宿主星系融为一体。黑洞要想达到这里所看到的大小,就必须突破所谓的"爱丁顿极限"在产生的辐射驱赶掉邻近的物质、掐断黑洞的食物供应之前,黑洞所能吸入的物质数量。这说明有两种可能。一种是这些天体在其历史的大部分时间里摄取的物质远远超过了爱丁顿极限这是我们没有观测到的,而且这颗类星体也绝对不是这样。另一种可能是,它们一开始的质量就很大(大约是太阳质量的104倍),并以更合理的速度不断进食。但我们并不清楚这么大的东西是如何形成的。因此,早期宇宙仍然是一个相当令人困惑的地方。DOI:10.1038/s41550-024-02273-0 ... PC版: 手机版:

封面图片

韦伯探索宇宙黎明:见证第一批以冷气体为食的星系

韦伯探索宇宙黎明:见证第一批以冷气体为食的星系 这幅插图显示了一个在宇宙大爆炸后几亿年才形成的星系,在重离子时代,气体是透明和不透明的混合体。来自美国宇航局詹姆斯-韦伯太空望远镜的数据显示,这些早期星系附近存在大量冷的中性气体而且这些气体的密度可能比预期的要高。韦伯望远镜在2022年开始观测几个月后,作为其宇宙演化早期释放科学(CEERS)调查的一部分观测到了这些星系。CEERS包括图像和来自其NIRSpec(近红外摄谱仪)上微型遮光器的光谱数据。作为韦伯早期发布科学(ERS)计划的一部分,CEERS的数据被立即发布,以支持类似的发现。资料来源:NASA、ESA、CSA、Joseph Olmsted(STScI)只有詹姆斯-韦伯太空望远镜才能探测和研究这些星系,当宇宙只有几亿年历史时,这些星系就在稠密、不透明的气体中形成了。虽然我们并不清楚第一批恒星开始闪耀的确切时间,但我们知道它们一定是在氢原子和氦原子形成的重组时代(宇宙大爆炸后 38 万年)之后的某个时间,也就是在已知最古老的星系出现之前(宇宙大爆炸后 4 亿年)形成的。第一批恒星发出的紫外线将充满宇宙的中性氢气分解成氢离子和自由电子,开启了重电离时代,结束了宇宙的黑暗时代。资料来源:NASA、ESA、CSA、STScI研究人员通过分析美国宇航局詹姆斯-韦伯太空望远镜(NASA's James Webb Space Telescope)的数据,确定了三个星系的位置,它们可能正在积极形成,当时宇宙的年龄只有4亿到6亿年。韦伯的数据显示,这些星系被气体包围,研究人员怀疑这些气体几乎纯粹是氢和氦,它们是宇宙中最早存在的元素。韦伯望远镜的仪器非常灵敏,因此能够探测到这些星系周围异常密集的气体。这些气体最终很可能会为星系中新恒星的形成提供燃料。"这些星系就像是在一片原本中性、不透明的气体海洋中闪闪发光的岛屿,"第一作者、丹麦哥本哈根大学宇宙黎明中心(DAWN)天体物理学助理教授卡斯帕-海因茨(Kasper Heintz)解释说。"如果没有韦伯望远镜,我们就无法观测到这些非常早期的星系,更不用说了解它们的形成过程了。""我们正在摒弃将星系视为孤立生态系统的看法。在宇宙历史的这一阶段,星系都与星系间介质及其原始气体细丝和结构紧密相连,"合著者、同时也是破晓天文台的博士生西蒙娜-尼尔森(Simone Nielsen)补充说。130 多亿年前,在重离子时代,宇宙是一个非常不同的地方。星系之间的气体在很大程度上对高能光不透明,因此很难观测到年轻的星系。随着恒星和年轻星系的不断形成和演化,它们开始改变周围的气体。经过数亿年的时间,气体从中性、不透明的气体转变为电离、透明的气体。资料来源:NASA、ESA、CSA、Joyce Kang(STScI)在韦伯望远镜的图像中,这些星系看起来就像模糊的红色污点,因此额外的数据(即光谱)对研究小组的结论至关重要。这些光谱显示,这些星系发出的光被大量中性氢气吸收。合著者之一、破晓天文台教授达拉赫-沃森(Darach Watson)说:"这些气体一定非常广泛,覆盖了星系的很大一部分。这表明我们看到的是中性氢气体聚集成星系的过程。这些气体将继续冷却、凝结,并形成新的恒星。"宇宙大爆炸后的几亿年,也就是所谓的"重离子时代"(Era of Reionization),当时的宇宙与现在截然不同。(恒星和星系之间的气体在很大程度上是不透明的。整个宇宙的气体直到宇宙大爆炸后 10 亿年左右才变得完全透明。星系中的恒星对其周围的气体进行加热和电离,使气体最终变得完全透明。)通过将韦伯的数据与恒星形成模型相匹配,研究人员还发现这些星系主要拥有年轻恒星群。"沃森补充说:"我们看到大量气体储层的事实也表明,这些星系还没有足够的时间形成大部分恒星。韦伯不仅实现了推动其开发和发射的任务目标,而且还超越了这些目标。"这些遥远星系的图像和数据在韦伯之前是不可能获得的,"合著者、破晓天文台副教授加布里埃尔-布拉莫尔(Gabriel Brammer)解释说。"另外,当我们第一次瞥见这些数据时,我们对将要发现的东西已经有了很好的感觉我们几乎是靠眼睛来发现的"。还有许多问题需要解决。这些气体具体在哪里?有多少位于星系中心附近,或者星系外围?这些气体是原始的,还是已经充满了更重的元素?未来还有大量研究工作要做。"海因茨说:"下一步是建立大型星系统计样本,详细量化星系特征的普遍性和显著性。深深地凝视这幅广阔的图景。它是由詹姆斯-韦伯太空望远镜(James Webb Space Telescope)用近红外线拍摄的多幅图像拼接而成的它实际上是在活动着。图片来源:NASA、ESA、CSA、Steve Finkelstein(UT Austin)、Micaela Bagley(UT Austin)、Rebecca Larson(UT Austin)、Alyssa Pagan(STScI)研究人员的发现得益于韦伯望远镜的宇宙演化早期发布科学(CEERS)调查,其中包括来自望远镜近红外摄谱仪(NIRSpec)的遥远星系的光谱,并作为韦伯早期发布科学(ERS)计划的一部分立即发布,以支持类似的发现。这项研究成果发表在 2024 年 5 月 24 日出版的《科学》杂志上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程

韦伯望远镜首次捕捉到宇宙最早期星系的诞生过程 这幅插图显示了一个在宇宙大爆炸后几亿年才形成的星系,在重离子时代,气体是透明和不透明的混合体。来自美国宇航局詹姆斯-韦伯太空望远镜的数据显示,这些早期星系附近存在大量冷的中性气体而且这些气体的密度可能比预想的要高。韦伯望远镜在2022年开始观测几个月后,作为其宇宙演化早期释放科学(CEERS)调查的一部分观测到了这些星系。CEERS包括图像和来自其NIRSpec(近红外摄谱仪)上微型遮光器的光谱数据。作为韦伯早期发布科学(ERS)计划的一部分,CEERS的数据被立即发布,以支持类似的发现。资料来源:NASA、ESA、CSA、Joseph Olmsted(STScI)这一发现是利用詹姆斯-韦伯太空望远镜(James Webb Space Telescope)完成的,该望远镜为我们地球上的人们带来了对形成中星系的首次"实时观测"。通过这架望远镜,研究人员能够看到大量气体发出的信号,这些气体在形成过程中不断积累并吸附到一个小型星系上。虽然根据理论和计算机模拟,星系就是这样形成的,但实际情况却从未出现过。"可以说,这是我们看到的第一张'直接'拍摄的星系形成图像。詹姆斯-韦伯之前向我们展示的是处于演化后期的早期星系,而在这里,我们见证了它们的诞生,从而也见证了宇宙中第一批恒星系统的构建。"尼尔斯-玻尔研究所的卡斯帕-埃尔姆-海因茨助理教授说,他领导了这项新研究。这项研究发表在备受推崇的科学杂志《科学》上。他们是如何做到的:研究人员利用复杂的模型,研究了来自这些星系的光线是如何被其内部和周围的中性气体吸收的,从而能够测量出宇宙第一批星系的形成过程。这种转变被称为莱曼-阿尔法转变。通过测量光线,研究人员能够将新形成的星系中的气体与其他气体区分开来。这些测量结果之所以能够实现,要归功于詹姆斯-韦伯太空望远镜极其灵敏的红外摄谱仪功能。大爆炸后不久诞生的星系研究人员估计,这三个星系的诞生大约发生在宇宙大爆炸之后的 4-6 亿年。虽然这听起来像是一个很长的时间,但它相当于在宇宙 138 亿年总寿命的前 3% 到 4% 的时间里形成的星系。宇宙大爆炸后不久,宇宙还是一团由氢原子组成的巨大不透明气体与今天不同的是,今天的夜空中布满了轮廓分明的恒星。"在宇宙大爆炸后的几亿年里,第一批恒星形成,之后恒星和气体开始凝聚成星系。"达拉赫-沃森(Darach Watson)副教授解释说:"这就是我们在观测中看到的开始过程。"星系的诞生发生在宇宙历史上被称为"再电离纪元"的时期,当时一些第一批星系的能量和光线冲破了氢气迷雾。研究人员正是利用詹姆斯-韦伯太空望远镜的红外视觉捕捉到了这些大量的氢气。这是迄今为止科研人员发现的对寒冷的中性氢气最遥远的测量,氢气是恒星和星系的组成部分。关于早期宇宙宇宙的"生命"始于大约 138 亿年前的一次巨大爆炸宇宙大爆炸。这一事件产生了大量的亚原子粒子,如夸克和电子。这些粒子聚集在一起形成质子和中子,随后凝聚成原子核。宇宙大爆炸后大约 38 万年,电子开始围绕原子核运行,宇宙中最简单的原子逐渐形成。第一批恒星是在几亿年后形成的。在这些恒星的内部,形成了我们周围更大、更复杂的原子。后来,恒星凝聚成星系。我们已知最古老的星系是在宇宙大爆炸后大约 3-4 亿年形成的。我们的太阳系诞生于大约 46 亿年前宇宙大爆炸后 90 多亿年。进一步了解我们的起源这项研究是由卡斯帕-埃尔姆-海因茨(Kasper Elm Heintz)与哥本哈根大学尼尔斯-玻尔研究所宇宙曙光中心的研究同事达拉赫-沃森(Darach Watson)、加布里埃尔-布拉莫尔(Gabriel Brammer)和博士生西蒙妮-维加尔(Simone Vejlgaard)等人密切合作完成的。这项最新成果让他们离实现这一目标更近了一步。研究小组已经申请了更多的詹姆斯-韦伯太空望远镜的观测时间,希望能够扩大他们的新成果,了解更多关于星系形成的最早时代的信息。"目前,我们正在绘制新观测到的星系形成图,其细节比以前更加丰富。与此同时,我们也在不断尝试突破我们所能看到的宇宙的极限。因此,也许我们会走得更远,"Simone Vejlgaard 说。研究人员认为,新知识有助于回答人类最基本的问题之一。"我们人类一直在问的一个最基本的问题是:'我们从哪里来?'在这里,我们通过揭示宇宙中一些最初的结构产生的时刻,拼凑出了更多的答案。"加布里埃尔-布拉莫尔(Gabriel Brammer)副教授总结说:"我们将进一步研究这个过程,希望能够拼凑出更多的拼图碎片。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人