研究人员在人类睾丸组织中发现微塑料

研究人员在人类睾丸组织中发现微塑料 微塑料通常指直径小于5毫米的塑料颗粒,可经由食物甚至呼吸进入人体。美国新墨西哥大学研究人员先前在人类胎盘样本中发现微塑料,后来用同样的实验方法设计了这项新实验。他们经由医学调查部门取得23份来自男性遗体的睾丸样本,从兽医诊所等处搜集到47份来自接受绝育手术公狗的睾丸样本,经化学处理溶解掉脂肪和蛋白质,结果在每份样本中均发现了微塑料。美国有线电视新闻网21日援引论文合著者、新墨西哥大学药学教授马修·坎彭的话报道,这些微塑料“通常为纳米级,一般长度不到半微米,宽度可能在20至200纳米之间”。专家介绍,如此微小的颗粒可以侵入主要器官的单个细胞和组织,扰乱细胞进程,还可能令干扰内分泌的化学物质积聚下来,而这些化学物质会干扰生殖系统。研究人员经测量发现,狗平均每克睾丸组织含有122.63微克微塑料,而在人的睾丸组织中这一数据为329.44微克,不仅比狗高,也明显高于先前在胎盘组织中发现的平均浓度。他们还在睾丸组织中鉴定出12种微塑料。其中,在狗和人类样本中出现最多的聚合物是聚乙烯。这是目前世界上使用最广泛的一种塑料,稳定性很高,难以自然降解。狗样本中,出现第二多的是另一种常见塑料聚氯乙烯。所有样本中均有微塑料,PE、PVC是主要类型由于人类样本获取方式的特殊性,精子已遭到严重破坏,无法估算数量,研究人员只能估算狗样本中的精子数量。结果显示,聚氯乙烯浓度较高关联精子数量较少。不过,研究人员没有在狗样本中发现聚乙烯浓度与精子数量间存在关联。依据研究人员说法,不同种类的塑料影响不同。聚氯乙烯含有可导致内分泌紊乱的化学物质,还会释放出许多干扰精子形成的化学物质。研究人员介绍,这项实验之所以将人类和狗的组织进行比对,原因之一是许多人与狗共同生活,生活环境几乎相同。另外,相较于老鼠等动物,狗在一些生物学特征上也“更接近人类”,比如精子的形成和浓度。值得注意的是,样本中男性死亡时平均年龄为35岁,而这些人在世接触塑料的年代,所流通的塑料相对较少。如今环境中塑料已大幅增加,“对年轻一代的影响可能更令人担忧”。研究人员希望人们能改变生活方式和行为,尽量减少对塑料的不必要接触。DOI: 10.1093/toxsci/kfae060 ... PC版: 手机版:

相关推荐

封面图片

研究人员在实验室中培育出了与真实睾丸非常相似的器官组织

研究人员在实验室中培育出了与真实睾丸非常相似的器官组织 器官组织是实验室培育的三维微型器官,主要来源于干细胞,它开辟了模拟器官模型的新途径,包括研究疾病状态和测试治疗药物。在过去十年中,我们已经看到了微型大脑、心脏、肺、胃和结肠,它们的复杂性和功能都在不断提高。不过,目前还没有模拟睾丸的类器官。以色列巴伊兰大学(Bar-Ilan University)的研究人员改变了这一现状,他们从新生小鼠细胞中培育出了睾丸(这是单个睾丸的意思)器官组织,并生成了与真实睾丸相似的结构。该研究的通讯作者尼赞-戈宁(Nitzan Gonen)说:"人工睾丸是一种很有前景的睾丸发育和功能基础研究模型,它可以转化为治疗性发育障碍和不育症的应用。"睾丸发育功能障碍可导致性发育障碍(DSDs),如今通常被称为双性人,这是一组涉及基因、激素和生殖器官(包括生殖器)的罕见疾病。发育障碍还可能导致男性不育,而人们对其背后的遗传和环境机制知之甚少。研究人员从新生小鼠睾丸而非胚胎睾丸入手。与新生睾丸相比,胚胎睾丸的可用睾丸细胞更少。研究中使用的小鼠经过基因工程改造,研究人员可以跟踪 Sertoli 细胞的存在和状态,Sertoli 细胞对睾丸的形成、精子的产生和发育(精子形成)至关重要。研究人员从四至七天大的小鼠身上采集了整个睾丸;将未成熟的睾丸细胞离解成单细胞,并在含有睾丸中正常存在的因子的培养基上重新组合。研究人员使用3D培养系统来支持更好的睾丸类器官形成和维护。到了第二天,细胞已经形成了清晰的器官样组织,并在九周的时间里继续增大,直至崩溃。睾丸由两个主要部分组成:睾丸索(后来成为产生精子的曲细精管)和间质区(曲细精管的机械支撑区和睾酮产生区)。两者都含有特定类型的细胞。21天后,器官组织包含了所有主要的睾丸细胞类型,包括Sertoli细胞,其组织方式与真正的睾丸非常相似。Sertoli细胞形成了许多类似于精曲小管的管状结构。胚胎细胞培育出的有机体图像,显示第 14 天时管状结构的形成尽管使用从新生小鼠身上采集的新生细胞制造睾丸器官组织相对方便,但研究人员还是尝试使用胚胎细胞,因为胚胎细胞需要从怀孕的雌性小鼠身上采集。他们的想法是这样的:新生儿细胞的用途有限,因为许多与睾丸发育和功能障碍有关的疾病都发生在胚胎阶段。利用同样的技术,他们成功地从胚胎小鼠细胞中培育出了睾丸器官组织,其管状结构比新生儿细胞培育的器官组织更加清晰。当研究人员尝试使用成年睾丸细胞时,却无法形成类器官。虽然睾丸器官组织未能产生精子,但有迹象表明这是有可能的。精子形成是一个漫长的过程,精子干细胞经过减数分裂(细胞分裂)形成精母细胞,再发育成成熟的精子。研究人员发现,器官组织中减数分裂标记的低水平表达似乎与时间有关,主要是在第21天到42天之间,这可能表明在器官组织培养的后期阶段存在少量完全成熟的精子。器官组织与真实的睾丸非常相似,这意味着它们可以用来促进我们对性别决定机制的了解,并为男性不育症提供解决方案。今后,研究人员计划利用人体样本生产类器官。例如,用人体细胞制造的睾丸类器官可以帮助正在接受癌症治疗的儿童,因为癌症会损害他们产生功能性精子的能力。他们设想收获未成熟的精子细胞,然后将其冷冻起来,用于制造可育精子的类器官。这项研究发表在《国际生物科学杂志》上。 ... PC版: 手机版:

封面图片

日本研究人员成功在较低温度下分解聚乙烯塑料

日本研究人员成功在较低温度下分解聚乙烯塑料 分解聚乙烯、聚丙烯等塑料材料通常需要 300 摄氏度以上的高温条件,能源消耗较多。日本东京大学日前发布新闻公报说,该校研究人员在铈的催化作用下,利用可见光照射含少量羧基的聚乙烯,成功实现在 80 摄氏度的较低温度环境下令这种聚乙烯分解。

封面图片

研究人员发现微塑料的威胁比已知的更大

研究人员发现微塑料的威胁比已知的更大 总共 17 份海水样本均显示微塑料的浓度高于以往的研究。巴塞尔大学环境科学系博士生、该研究的主要作者克拉拉-莱斯滕施耐德说:"原因在于我们进行的采样类型。"本次研究的重点是大小在 11 到 500 微米之间的颗粒。研究人员通过将水抽入水箱、过滤,然后使用红外光谱分析法进行收集。该地区以前的研究大多使用网眼尺寸约为 300 微米的细网从海洋中收集微塑料颗粒。较小的颗粒会直接穿过这些浮游生物网。新研究结果表明,水中 98.3% 的塑料微粒小于 300 微米,这意味着以前的样本中没有收集到这些微粒。莱斯滕施耐德指出:"南极海洋的污染远远超出了以往研究报告的范围。这项研究发表在《整体环境科学》(Science of the Total Environment)杂志上。"洋流起什么作用?各个样本受到污染的程度不同。在大陆坡和南极斜坡洋流以北采集的近海样本中,微塑料的浓度最高。其原因尚无定论。可能是海岸附近形成的冰层会保留微小的塑料颗粒,只有当冰层融化时,它们才会被释放回水中。洋流也可能在其中发挥了作用。德国海利戈兰 AWI 的 Gunnar Gerdts 认为:"洋流可能像一道屏障,减少了南北方之间的水交换。"可以肯定的是,洋流是一个重要因素,也是该领域许多未决问题的主题。到目前为止,研究人员只对海洋表面的水样进行了研究,而没有对更深处的水样进行研究。这主要是由于考察船采集样本的时间有限,而且设备的抽水能力不足。不过,分析这些数据还是很有启发性的,因为深层洋流与表层洋流差别很大,而且温盐环流会导致与北部地区水团的交换。目前还不清楚这些微塑料最初是如何进入威德尔海的,也不清楚它们是否会离开该地区。强大的南极环极洋流在南纬 60 度左右环绕南极洋流动,可能会阻止它们离开。研究人员还无法断定微塑料的来源。可能的来源包括来自旅游业、渔业和研究行业的区域性船舶运输,以及陆地上的研究站。不过,微塑料也可能通过洋流或大气传输从其他地区进入南极洲。通过研究提高认识研究人员计划下一步重点分析在同一次考察中收集的沉积物样本。海底是独特和敏感生物的家园,也是南极牛鱼(Bovichtidae)的繁殖地。随着南极海洋旅游业的增加,未来污染可能会进一步加剧,对环境和食物链造成进一步影响。尽管如此,莱斯滕施耐德仍然保持着谨慎乐观的态度:"近年来,有关这一主题的研究极大地提高了人们对微塑料对环境和所有生物造成的问题的认识。"她指出,尽管目前还没有一个包罗万象的解决方案,但世界各地的利益相关者都在积极努力,以更好地了解这一问题,并开发出减少塑料污染的创新理念。当然,"每一个有环保意识的人都可以带来积极的变化"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

日本研究人员成功在较低温度下分解聚乙烯塑料

日本研究人员成功在较低温度下分解聚乙烯塑料 日本东京大学研究人员成功实现了在较低温度环境下分解聚乙烯塑料。 新华社报道,分解聚乙烯、聚丙烯等塑料材料通常需要300摄氏度以上的高温条件,能源消耗较多。日本东京大学日前发布新闻公报说,研究人员在铈的催化作用下,利用可见光照射含少量羧基的聚乙烯,成功实现在80摄氏度的较低温度环境下令这种聚乙烯分解。 产生碳自由基是引发碳-碳键断裂的关键。东京大学研究团队将少量羧基官能团引入聚乙烯,然后针对这种羧化聚乙烯粉末,摸索能令羧基在光照射下产生碳自由基的反应条件。 东京大学说,塑料废弃物导致的环境污染日益成为严重的社会问题,特别是生产量大的聚乙烯和聚丙烯等塑料材料的回收利用是亟待解决的问题。但聚乙烯和聚丙烯分子链包含的碳-碳键非常稳定,进行分解一般需要300摄氏度以上的高温条件。 研究发现,在添加少量铈催化剂的80摄氏度乙腈中,用发光波长为430纳米的LED灯照射羧化聚乙烯粉末,可使羧基生成碳自由基,并且其高反应性切断了聚乙烯分子链上的碳-碳键,长链羧化聚乙烯分子被降解成分子量约500的片段。研究还确认,这一反应不仅能在乙腈中进行,在水中也能发生。 相关论文已发表在《美国化学学会杂志》上。公报说,本项研究在较低温度环境下实现了通常需要高温条件的聚乙烯分解,表明经羧基官能团修饰的聚乙烯将来有望作为可降解塑料使用,这将使回收利用更加节能、低成本。 2024年7月10日 12:55 PM

封面图片

日本研究人员找到将塑料垃圾转化为化学宝藏的突破性新方法

日本研究人员找到将塑料垃圾转化为化学宝藏的突破性新方法 北海道大学的研究人员开发出了一种开创性的方法,通过利用塑料废弃物引发自由基链式反应来解毒有害化学物质,从而实现塑料废弃物的再利用。这种方法既提高了安全性和效率,又解决了塑料垃圾的环境问题,为可持续发展和具有经济吸引力的化学工艺铺平了道路。艺术想象图描绘了从塑料纤维中产生的被称为自由基的极高活性分子。图片来源:Koji Kubota 和 Hajime Ito北海道大学化学反应设计与发现研究所(WPI-ICReDD)的研究人员领导的研究小组开发出一种方法,利用普通塑料材料而不是潜在的爆炸性化合物来引发自由基链式反应。这种方法大大提高了过程的安全性,同时还提供了一种重新利用聚乙烯和聚醋酸乙烯等普通塑料的方法。这些研究成果已发表在《美国化学学会杂志》上。(上图)利用机械力引发自由基链式反应的一般方案。(下图)利用杂货袋碎片在球磨罐中引发反应。资料来源:Koji Kubota 等人,《美国化学学会杂志》。2023 年 12 月 22 日研究人员利用球磨机(一种在钢罐中快速摇动钢球以混合固体化学物质的机器)进行研究。当钢球撞击塑料时,机械力会打破化学键,形成自由基,自由基具有高活性的非键电子。这些自由基促进了自我维持的链式反应,从而促进了有机卤化物的脱卤反应,即用氢原子取代卤原子。"使用商品塑料作为化学试剂是有机合成的一个全新视角,"Koji Kubota 副教授说。"我相信,这种方法不仅能开发出安全、高效的基于自由基的反应,还能为利用废塑料这一严重的社会问题提供新的途径"。北海道大学化学反应设计与发现研究所(WPI-ICReDD)研究团队的 Koji Kubota 副教授(左)和 Hajime Ito 教授(右)。资料来源:WPI-ICReDD在球磨罐中加入普通杂货袋的塑料碎片并成功进行反应,证明了废塑料的再利用。研究小组还展示了他们的方法可用于处理工业中广泛使用的剧毒多卤化合物。他们利用聚乙烯引发自由基反应,从一种常用于阻燃剂的化合物中去除多个卤原子,从而降低了其毒性。研究人员预计,由于这种方法在成本和安全性方面的优势,它将赢得业界的关注。Hajime Ito 教授评论说:"我们的新方法使用稳定、廉价和丰富的塑料材料作为自由基链式反应的引发剂,在促进开发具有工业吸引力、安全和高效的化学工艺方面具有巨大潜力。"这项研究得到了日本学术振兴会、日本科学技术振兴机构和日本文部科学省的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

令人震惊的研究发现人类胎盘中都含有微塑料

令人震惊的研究发现人类胎盘中都含有微塑料 人类胎盘中发现的微塑料的显微照片和拉曼光谱:(a) 1 号微粒(比例尺为 5 μm);(b) 2 号和 10 号微粒(2 号微粒的比例尺为 5 μm,10 号微粒的比例尺为 10 μm);(c) 3 号微粒(比例尺为 5 μm);(d) 4 号微粒(比例尺为 5 μm);(e) 5 号微粒(比例尺为 5 μm);(f) 6 号和 7 号粒子(6 号粒子的比例尺为 10 μm,7 号粒子的比例尺为 5 μm); (g) 8 号粒子(比例尺为 10 μm); (h) 9 号粒子(比例尺为 10 μm); (i) 11 号粒子(比例尺为 5 μm),以及 (l) 12 号粒子(比例尺为 10 μm)。在 2 月 17 日发表在《毒理学科学》(Toxicological Sciences)杂志上的一项研究中,由 UNM 制药科学系摄政教授 Matthew Campen 博士领导的研究小组报告说,在所有 62 个受检胎盘样本中都发现了微塑料,其浓度从每克组织 6.5 微克到 790 微克不等。虽然这些数字看起来很小(微克是一克的百万分之一),但坎彭担心环境中的微塑料数量持续上升会对健康造成影响。对于毒理学家来说,"剂量决定毒性",他说。"如果剂量不断增加,我们就会开始担心。如果我们看到胎盘受到影响,那么地球上所有哺乳动物的生命都可能受到影响。这可不是什么好事。"在这项研究中,坎彭和他的团队与贝勒医学院和俄克拉荷马州立大学的同事合作,对捐赠的胎盘组织进行了分析。在一种叫做皂化的过程中,他们对样本进行化学处理,将脂肪和蛋白质"消化"成一种肥皂。然后,他们将每个样本放入超速离心机中旋转,这样就在试管底部留下了一小块塑料。接下来,他们使用一种名为热解的技术,将塑料颗粒放入一个金属杯中,加热至 600摄氏度,然后捕捉不同类型塑料在特定温度下燃烧时排放的气体。研究人员发现,胎盘组织中最常见的聚合物是用于制造塑料袋和塑料瓶的聚乙烯,它占塑料总量的 54%。聚氯乙烯(俗称 PVC)和尼龙各约占总量的 10%,其余为其他九种聚合物。马库斯-加西亚(Marcus Garcia)是坎朋实验室的一名博士后研究员,他的药剂学博士曾做过许多实验,他说,到目前为止还很难量化人体组织中存在多少微塑料。通常情况下,研究人员只需计算显微镜下可见的微粒数量,尽管有些微粒小到无法看见。他说:"有了这种新的分析方法,我们就能更进一步,对其进行充分量化,并根据我们所掌握的塑料,说出'这是多少微克或多少毫克'。自 20 世纪 50 年代初以来,全球塑料使用量呈指数级增长,地球上每个人都会产生一公吨塑料垃圾。已生产的塑料中约有三分之一仍在使用,但其余大部分已被丢弃或送往垃圾填埋场,在那里,塑料会因暴露于阳光中的紫外线辐射而开始分解。加西亚说:"这些物质最终会进入地下水,有时还会气溶胶化,最终进入我们的环境。我们不仅通过摄入,还通过吸入获得这种物质。它不仅影响我们人类,还影响我们所有的动物鸡、牲畜和我们所有的植物。我们在一切事物中都能看到它"。坎朋指出,许多塑料的半衰期很长,即样品的一半降解所需的时间。他说:"因此,有些东西的半衰期是 300 年,而有些东西的半衰期是 50 年,但从现在到 300 年之间,有些塑料会降解。"也就是说,我们在环境中看到的这些微塑料可能已经有 40 或 50 年的历史了。虽然微塑料已经存在于我们的体内,但目前还不清楚它们会对健康产生什么影响(如果有的话)。他说,传统上,人们认为塑料具有生物惰性,但有些微塑料非常小,以纳米为单位(十亿分之一米),能够穿过细胞膜。微塑料在人体组织中的浓度越来越高,这可能是某些类型的健康问题(如 50 岁以下人群中的炎症性肠病和结肠癌)增加以及精子数量下降的原因。他说,胎盘中的微塑料浓度尤其令人担忧,因为胎盘组织只生长了八个月(怀孕一个月左右开始形成),身体其他器官的累积时间要长得多。坎彭和他的同事正计划开展进一步研究,以回答其中的一些问题,但与此同时,他对全球塑料产量的不断增长深感忧虑。他说:"情况只会越来越糟,而且微塑料的浓度每 10 到 15 年就会翻一番。因此,即使我们今天阻止它,到 2050 年,背景中的塑料将是现在的三倍。而显然我们今天是无法阻止它的"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人