欧几里德任务在新发布的五张图像中揭示了隐藏的暗宇宙

欧几里德任务在新发布的五张图像中揭示了隐藏的暗宇宙 Messier 78 是一个恒星形成的苗圃,被星际尘埃笼罩,距离地球 1300 光年。欧几里得利用其红外摄像机,首次揭示了恒星形成的隐蔽区域,并以前所未有的细节绘制了复杂的气体和尘埃细丝。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard License欧几里德任务发布了五张新图片,展示了太空望远镜探索两大宇宙奥秘的能力:暗物质和暗能量。暗物质是一种看不见的物质,在宇宙中比"常规"物质常见五倍,但成分不明。"暗能量"是对导致宇宙膨胀越来越快的未知来源的称呼。欧几里得任务由欧洲航天局(ESA)领导,美国国家航空航天局(NASA)也提供了帮助、到 2030 年,"欧几里得"将绘制出一张覆盖近三分之一天空的宇宙地图,其视场范围远远超过美国国家航空航天局(NASA)的哈勃和詹姆斯-韦伯太空望远镜。届时,科学家们将以前所未有的高精度绘制出暗物质的存在图。他们还可以利用这张地图来研究暗能量的强度是如何随着时间的推移而变化的。由欧空局欧几里得望远镜拍摄的星系团 Abell 2764(右上角)包含数百个星系。星系团外的区域还包含了遥远的星系,这些星系看起来就像宇宙只有 7 亿岁时的样子。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard License这五张新照片展示了大小不一的景象从银河系中的恒星形成区到数百个星系团它们是在欧几里得2023年7月发射后不久拍摄的,是其早期发布观测计划的一部分。去年,在科学家对数据进行分析之前,这项任务发布了该计划中的五幅图像,作为欧几里德计划的预览。新图像、相关科学论文和数据可在欧几里得网站上查阅。有关这些发现的欧空局预录节目可在欧空局电视台和YouTube上观看。美国国家航空航天局(NASA)即将发射的南希-格蕾丝-罗曼太空望远镜的任务规划人员将利用欧几里得的发现为罗曼的暗能量补充工作提供信息。科学家们将利用灵敏度和锐度更高的罗曼望远镜,通过研究更暗、更遥远的星系来扩展欧几里得望远镜所能实现的科学研究。欧几里得视角下的多拉多星系群显示出星系相互作用和合并的迹象。朦胧的白色和黄色物质外壳,以及延伸至太空的弯曲"尾巴",都是星系间引力相互作用的证据。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard License欧几里得将帮助科学家研究暗物质的方法之一,就是观察这一神秘现象如何扭曲来自遥远星系的光线,就像在其中一幅以名为 Abell 2390 的星系团为特色的新图像中看到的那样。星系团的质量(包括暗物质)在空间中形成了曲线。来自更遥远星系的光线经过这些曲线时,会出现弯曲或弧形,就像光线穿过旧窗户上扭曲的玻璃时一样。有时,这种弯曲非常强烈,会形成环状、明显的弧形或同一星系的多个图像这种现象被称为强引力透镜。有兴趣探索暗能量效应的科学家将主要寻找一种更微妙的效应,即弱引力透镜效应,这种效应需要详细的计算机分析才能探测到,并揭示出更小的暗物质团块的存在。通过绘制暗物质图并追踪这些团块如何随时间演变,科学家们将研究暗能量的外向加速如何改变了暗物质的分布。在这张距离地球 27 亿光年的星系团 Abell 2390 的图像中,可以看到 5 万多个星系。在图像中心附近,一些星系显得模糊而弯曲,这种效应被称为强引力透镜效应,可以用来探测暗物质。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard License南加州喷气推进实验室的NASA欧几里德项目科学家迈克-塞弗特(Mike Seiffert)说:"由于暗能量是一种相对较弱的效应,我们需要进行更大规模的调查,以获得更多的数据和更好的统计精度。我们无法放大一个星系并对其进行详细研究,需要观察更大的区域,但仍然能够探测到这些微妙的影响。要做到这一点,我们需要一个像欧几里德这样的专业太空望远镜。"该望远镜使用两台探测不同波长光线的仪器:可见光成像仪(VIS)和近红外分光光度计(NISP)。前景星系发出的可见光波长(人眼可以感知的波长)较多,而背景星系的红外波长通常较亮。"用这两种仪器观测星系团,可以让我们看到距离范围更广的星系,这比我们单独使用可见光或红外线仪器所能看到的距离都要广,"JPL的杰森-罗兹(JasonRhodes)说,他是NASA欧几里德暗能量科学团队的首席研究员。"而且,Euclid 拍摄这类深度、广度和高分辨率图像的速度比其他望远镜快数百倍。欧几里得的大视野捕捉到了 NGC 6744 星系的全貌,并向天文学家展示了恒星形成的关键区域。形成恒星是星系生长和演化的主要方式,因此这些研究对于了解星系为什么会呈现出这样的面貌至关重要。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO or ESA Standard License虽然暗物质和暗能量是欧几里德的核心。这项任务还有其他多种天文应用。例如,欧几里德的大面积天空图可以用来发现暗淡的天体,观测宇宙天体的变化,如恒星亮度的变化。欧几里得的新科学成果包括探测到自由浮游行星(不围绕恒星运行的行星),这些行星由于微弱而难以发现。此外,数据还揭示了新发现的褐矮星。这些天体被认为是像恒星一样形成的,但还没有大到足以在其内核中开始核聚变,它们凸显了恒星和行星之间的差异。现在发表的数据、图像和科学论文标志着欧几里得号科学成果的开端,它们展示了该任务主要目标之外的令人惊叹的科学多样性,塞弗特说,"我们已经从欧几里得号的广阔视野中看到了研究单个行星、银河系特征和大宇宙结构的成果。我们已经从欧几里德的广阔视野中看到了研究单个行星、银河系特征以及大尺度宇宙结构的成果。要跟上所有的发展,既令人激动,又有点不知所措。"美国国家航空航天局支持的三个科学小组为欧几里德任务做出了贡献。除了为Euclid的近红外分光计和光度计(NISP)仪器设计和制造传感器芯片电子设备外,JPL还领导了NISP探测器的采购和交付工作。这些探测器和传感器芯片电子设备在马里兰州格林贝尔特戈达德太空飞行中心的 NASA 探测器特性实验室进行了测试。位于加利福尼亚州帕萨迪纳的加州理工学院欧几里得IPAC(ENSCI)NASA科学中心将对科学数据进行存档,并为美国的科学调查提供支持。JPL 是加州理工学院的一个分部。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

欧几里得太空望远镜首次提供科学图像 追踪宇宙的黑暗面

欧几里得太空望远镜首次提供科学图像 追踪宇宙的黑暗面 欧几里得的优势在于它的多样性:欧几里得大图像平面的这一小部分显示了英仙座星系团的细节。在2.4亿光年的距离上,可以清晰地辨认出前景中作为星系团一部分的各种类型和形状的星系,以及背景中一系列微弱、弥漫的光点在欧几里得成像之前,这些星系的光线已经传播了数十亿年。图片来源:ESA/Euclid/Euclid Consortium/NASA, Image Processing by J.-C.Cuillandre, G. Anselmi; CC BY-SA 3.0 IGO这幅画描绘的是欧空局的欧几里得(Euclid)航天器。欧几里得号是一项开创性的任务,旨在观测数十亿个微弱的星系,研究宇宙加速膨胀的起源,以及暗能量、暗物质和引力的神秘本质。图片来源:欧空局这些图像是将其两台仪器的数据结合在一起的结果:VIS(可见光仪器)和NISP(近红外摄谱仪和光度计)旨在利用大面积探测器捕捉可见光和近红外线。欧几里德望远镜最重要的任务是对宇宙进行最详细的三维测绘,从而揭开宇宙的一些秘密。包括马克斯-普朗克天文学和地外物理学研究所在内的欧几里得联合会德国成员开发了望远镜的关键技术组件。他们还为管理庞大的数据流提供后勤服务,并确保公布数据的质量。追踪暗物质这幅来自欧几里德的图像是第一次在如此大的图像截面上同时捕捉到英仙座星系团中如此多的星系,而且细节如此丰富。这幅图像显示了属于英仙座星系团的 1000 个星系,英仙座星系团是宇宙中质量最大的结构之一。在背景中还可以看到距离更远的其他 5 万多个星系。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO以前的太空望远镜,如哈勃望远镜或詹姆斯-韦伯望远镜,都是为了详细观测天空中非常小的区域而建造的。而欧几里德望远镜则以同样高的图像质量拓宽了视野:得益于其大型光学系统、灵敏的仪器以及位于地球大气层之外的位置,它能在相对较短的观测时间内提供大片天空的图像,这些图像也非常清晰,并包含了遥远星系的微弱光线。通过发布的图像,欧几里得联盟成员利用五个选定的天体展示了欧几里得的全部潜能。每幅图像覆盖的区域比满月稍大。到任务结束时,大约有 40000 个这样的图像部分将被合并,形成天空中约 14,000 平方度的广阔区域。这占整个天空的三分之一,不包括我们自己的银河系。一个让人联想起我们银河系的星系:IC 342 星系距离我们 1100 万光年,在天空中看起来和满月差不多大。在运行过程中,Euclid 将对数十亿个其他星系进行成像,这些星系甚至比 IC 342 更遥远,它们揭示了暗物质和暗能量的无形影响。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO现已发布的图像清楚地表明了一点:每张图像都将是一座宝库,让人们对单个恒星、银河系或遥远星系的物理学有新的认识。位于慕尼黑附近加兴的马克斯-普朗克地外物理研究所和慕尼黑路德维希-马克西米利安大学的 Maximilian Fabricius 说:"这台望远镜将收集大量数据,探测到比以前更多的天体。我们都需要适应欧几里得将提供的大量信息"。有深度的快照:这个图像截面比英仙座星团的整体图像小 200 倍左右,能让人感受到前景英仙座星团壮丽图像所掩盖的细节。带有六个星形"尖峰"的最亮点是前景中银河系的恒星。在这些恒星之间有许多漫射的微红色斑块,它们是宇宙早期的星系。有些星系距离我们非常遥远,以至于它们的光线需要 100 亿年才能到达我们这里。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO英仙座星系团就是一个例子。这些星系团是宇宙中一些最大、最庞大的结构。如果没有暗物质网络,这里描述的星系将均匀地分布在天空中。马克斯-普朗克地外物理研究所和路德维希-马克西米利大学的科学家马蒂亚斯-克鲁格解释说:"利用欧几里德望远镜的巨大视场和超高的灵敏度,可以测量英仙座星系团中的星系,直至它们最外围和最暗淡的区域。"在同一张图片中,还有其他与英仙座星团无关的星系。由于光的传播速度是有限的,在宇宙中看得越远,发现的星系就越古老,处于不同发展阶段的星系也就越多。这些丰富的信息将大大有助于研究人员了解以星系的大量碰撞和合并为标志的宇宙早期"。银河系附近的一个奇异星系:不规则星系NGC 6822是矮星系的一个例子,它不像我们的银河系那样有适当的旋臂。这种星系被认为是附近年轻宇宙中成熟星系的组成部分,欧几里得将绘制出完整的宇宙地图。如果你仔细观察,就能辨认出单个恒星,甚至超新星残骸。图片来源:ESA/Euclid/Euclid Consortium/NASA, 图像处理:J.-C.Cuillandre (CEA Paris-Saclay), G. Anselmi, CC BY-SA 3.0 IGO我们的宇宙中约有 95% 似乎由神秘的"暗"元素组成,它们在英仙座星系团的形成过程中也发挥了作用。暗物质决定着星系之间和星系内部的引力效应,最初减缓了宇宙的膨胀,而暗能量则推动着宇宙目前的加速膨胀。然而,暗物质和暗能量的本质仍然难以捉摸。科学家们所知道的是,这些物质会使望远镜观测到的物体的外观和运动发生微妙的变化。为了探测"暗"对可见宇宙的影响,欧几里得号将在未来六年内观测 100 亿光年外数十亿星系的形状、距离和运动。在这里,来自 NIST 红外仪器的光谱信息得到了来自地面望远镜的光学光谱的补充,这将非常精确地确定欧几里得所拍摄星系的距离和运动情况,并将欧几里得的二维照片转化为有史以来最全面的可见宇宙三维地图。欧几里得号是欧洲航天局(ESA)的一项太空任务,美国国家航空航天局(NASA)为该任务做出了贡献。它是欧空局宇宙视野计划的一部分。VIS 和 NISP 相机是由来自 17 个国家的科学家和工程师联合开发和制造的,其中许多来自欧洲,但也有美国、加拿大和日本。在德国,海德堡马克斯-普朗克天文学研究所、加兴马克斯-普朗克地外物理学研究所、慕尼黑路德维希-马克西米利安大学、波恩大学、波鸿鲁尔大学和波恩德国航空航天中心的德国航天局都参与了这项工作。德国航天中心的德国航天局负责协调德国对欧空局的贡献,并为参与的德国研究机构提供资金。德国是欧空局科学计划的最大贡献者,约占 21%。编译自/ScitechDaily ... PC版: 手机版:

封面图片

SpaceX 发射 ESA 的欧几里得太空望远镜绘制“黑暗宇宙”

SpaceX 发射 ESA 的欧几里得太空望远镜绘制“黑暗宇宙” 7 月 1 日 11:12 a.m. ET,SpaceX 在佛罗里达州卡纳维拉尔角空军基地使用 Falcon 9 火箭成功发射了 ESA 的欧几里得太空望远镜。望远镜以古希腊数学家欧几里得的名字命名,它将飞往日地之间的拉格朗日 L2 点,距离地球 160 万公里,预计需要飞行 1 个月时间。到达预定轨道之后,还需要花 2 个月时间测试和校准仪器。这一过程和 NASA 的韦伯太空望远镜类似。欧几里得望远镜的目标是测绘宇宙中暗物质的大尺度分布结构,并确认暗能量的性质。望远镜的口径为 1.2 米,它主要通过近红外光波长观测宇宙。预计在 2027 年发射的 NASA 南希·格蕾丝·罗曼太空望远镜将在红外波长下观测宇宙,它们将共同创建宇宙的三维地图。来源 ,() 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

最早的星系可能比以前认为的更小更亮 颠覆暗物质理论

最早的星系可能比以前认为的更小更亮 颠覆暗物质理论 在过去的一年半里,詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄到了宇宙大爆炸后不久形成的遥远星系的惊人图像,让科学家们第一次看到了宇宙的雏形。现在,一组天体物理学家提高了要求:找到时间起点附近最微小、最明亮的星系,否则科学家们将不得不彻底重新思考他们关于暗物质的理论。由加州大学洛杉矶分校天体物理学家领导的研究小组进行了模拟,追踪了宇宙大爆炸后小星系的形成过程,并首次将以前被忽视的气体与暗物质之间的相互作用纳入其中。他们发现,在不考虑这些相互作用的典型模拟中,所形成的星系非常微小、明亮得多,而且形成速度更快,反而显示出更暗的星系。矮星系在宇宙研究中的重要性小星系,也叫矮星系,遍布整个宇宙,通常被认为是最早的星系类型。因此,研究宇宙起源的科学家对小星系特别感兴趣。但是,他们发现的小星系并不总是和他们认为应该发现的星系一致。那些最靠近银河系的星系旋转得更快,或者密度没有模拟的那么高,这表明模型可能遗漏了一些东西,比如这些气体-暗物质的相互作用。发表在 《天体物理学杂志通讯》上的这项新研究通过加入暗物质与气体的相互作用改进了模拟,并发现这些暗星系在宇宙历史的早期可能比预期的要亮得多,当时它们刚刚开始形成。作者建议科学家利用韦伯望远镜等天文望远镜寻找比预期亮得多的小星系。如果他们只找到微弱的星系,那么他们关于暗物质的一些想法可能就是错误的。斯蒂芬五重奏(Stephan's Quintet)是由五个星系组成的视觉组合,由詹姆斯-韦伯太空望远镜提供的近千个独立图像文件合成。加州大学洛杉矶分校的天体物理学家认为,如果冷暗物质理论是正确的,韦伯望远镜应该能发现宇宙早期微小而明亮的星系。图片来源:NASA、ESA、CSA、STScI难以捉摸的暗物质本质暗物质是一种不与电磁或光相互作用的假想物质。因此,它无法用光学、电学或磁学进行观测。但暗物质确实与引力相互作用,人们从暗物质对普通物质构成所有可观测宇宙的物质的引力效应中推断出暗物质的存在。尽管宇宙中 84% 的物质被认为是由暗物质构成的,但它从未被直接探测到过。所有星系都被一圈巨大的暗物质光环所包围,科学家们认为暗物质对星系的形成至关重要。天体物理学家用来理解星系形成的"标准宇宙学模型"描述了宇宙早期的暗物质团块如何通过引力吸引普通物质,导致恒星的形成,并创造出我们今天看到的星系。由于大多数暗物质粒子(被称为冷暗物质)的运动速度被认为比光速慢得多,因此这一积累过程是逐渐发生的。了解星系形成的理论进展但是在130多亿年前,也就是第一批星系形成之前,由来自宇宙大爆炸的氢气和氦气组成的普通物质和暗物质在相对运动。气体以超音速流过移动速度较慢的暗物质的密集区,这些暗物质本应该把气体拉进来形成星系。"事实上,在不考虑流的模型中,这正是发生的情况,"加州大学洛杉矶分校博士生、论文第一作者克莱尔-威廉姆斯说。"气体被暗物质的引力吸引,形成密度大到可以发生氢聚变的团块和结块,从而形成像我们太阳这样的恒星。"但威廉姆斯和"超音速项目"团队的合著者(由加州大学洛杉矶分校物理学和天文学教授斯马达尔-纳奥兹领导的一组来自美国、意大利和日本的天体物理学家组成)发现,如果他们在模拟中加入暗物质和普通物质之间不同速度的流效应,气体就会落在远离暗物质的地方,无法立即形成恒星。数百万年后,当积累的气体落回星系时,恒星的形成就会同时爆发。由于这些星系在一段时间内比普通的小星系拥有更多年轻、炽热、发光的恒星,因此它们要亮得多。威廉姆斯说:"虽然流星抑制了最小星系中恒星的形成,但它也促进了矮星系中恒星的形成,使它们比宇宙中没有流星的区域更加明亮。我们预测,韦伯望远镜将能够发现宇宙中因这种速度而变得更加明亮的星系区域。事实上,它们应该如此明亮,这可能会让望远镜更容易发现这些小星系,而这些星系通常在宇宙大爆炸后 3.75 亿年才极难被发现。"由于暗物质是无法直接研究的,因此在早期宇宙中寻找明亮的星系斑块可以为暗物质理论提供有效的检验,而这种检验迄今为止还没有结果。"在早期宇宙中发现成片的小而明亮的星系将证实我们的冷暗物质模型是正确的,因为只有两种物质之间的速度才能产生我们正在寻找的星系类型,"霍华德和阿斯特里德-普雷斯顿天体物理学教授诺兹说。"如果暗物质的行为不像标准的冷暗物质,不存在流效应,那么这些明亮的矮星系就不会被发现,我们就需要回到绘图板上去。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜的"红外之眼"以生动的细节揭示黑洞奥秘

韦伯望远镜的"红外之眼"以生动的细节揭示黑洞奥秘 这幅詹姆斯-韦伯太空望远镜拍摄的类星体 RX J1131-1231 的图像突出显示了引力透镜的作用,它放大了类星体,从而可以对其特性和周围的暗物质进行详细研究。X 射线辐射表明黑洞正在快速旋转,很可能是由于星系合并造成的。资料来源:ESA/Webb、NASA & CSA、A. Nierenberg它被认为是迄今为止发现的透镜效果最好的类星体之一,因为前景星系将背景类星体的图像涂抹成了一个明亮的弧形,并形成了该天体的四幅图像。引力透镜最早是由爱因斯坦预测的,它提供了一个难得的机会来研究遥远类星体中靠近黑洞的区域,它就像一个天然望远镜,可以放大这些光源发出的光。宇宙中的所有物质都会扭曲自身周围的空间,质量越大,产生的影响就越大。在质量非常大的天体(如星系)周围,经过附近的光线会沿着这种扭曲的空间移动,看起来会明显偏离原来的轨迹。引力透镜的后果之一是它可以放大遥远的天体,让天文学家研究那些原本过于暗淡或遥远的天体。詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄到了位于 60 亿光年之外的类星体 RX J1131-1231 的图像,展示了引力透镜的效果,将遥远的类星体放大成一个明亮的弧线和多幅图像。图片来源:ESA/Webb、NASA & CSA、A. Nierenberg对类星体发出的 X 射线进行测量,可以显示中心黑洞的旋转速度,这为研究人员提供了有关黑洞如何随时间增长的重要线索。例如,如果黑洞主要是通过星系间的碰撞和合并成长起来的,那么它应该在一个稳定的圆盘中积累物质,而来自圆盘的新物质的稳定供应应该会导致黑洞快速旋转。另一方面,如果黑洞是通过许多小的吸积事件成长起来的,它就会从随机的方向积累物质。观测结果表明,这个特殊类星体中的黑洞旋转速度超过光速的一半,这表明这个黑洞是通过合并而生长的,而不是从不同方向吸积物质。这张照片是用韦伯望远镜的中红外成像仪(MIRI)拍摄的,是暗物质研究观测计划的一部分。暗物质是一种看不见的物质,占宇宙质量的大部分。韦伯望远镜对类星体的观测使天文学家能够以前所未有的小尺度探测暗物质的性质。编译自/ScitechDaily ... PC版: 手机版:

封面图片

哈勃望远镜团队发布壮观的小哑铃星云景象 庆祝航天器在轨34周年

哈勃望远镜团队发布壮观的小哑铃星云景象 庆祝航天器在轨34周年 天文学家通过拍摄 3400 光年外的小哑铃星云图像来庆祝哈勃太空望远镜诞生 34 周年。哈勃已经进行了 160 万次观测,研究人员借此发表了 44000 多篇科学论文。詹姆斯-韦伯太空望远镜(James Webb Space Telescope)对哈勃望远镜的研究成果进行了补充,继续拓展我们对宇宙的认识。图片来源:NASA、ESA、STScI、A. Pagan(STScI)一颗红巨星在燃烧殆尽之前,会喷射出一个气体和尘埃环。这个环可能是由一颗双星伴星的作用形成的。这些脱落的物质沿着伴星轨道的平面形成了一个厚厚的尘埃和气体盘。哈勃图像中看不到这颗假想伴星,因此它可能后来被中心恒星吞没了。这个圆盘就是恒星吞食的证据。专业天文学家在1891年首次拍摄到了它的光谱,结果表明它是一个星云,而不是星系或星团。他们认为M76可能类似于甜甜圈状的环状星云(M57),而不是从侧面看到的。三十多年来,NASA/ESA 哈勃太空望远镜彻底改变了现代天文学,不仅造福了天文学家,也带领公众踏上了奇妙的探索和发现之旅。哈勃每年都会抽出一小部分宝贵的观测时间来拍摄特别的周年纪念图像,展示特别美丽和有意义的天体。哈勃发射 34 周年纪念以小哑铃星云的快照来庆祝。图片来源:NASA, ESA, STScI, A. Pagan (STScI), N. Bartmann (ESA/Hubble)M76 被归类为行星状星云,它是由一颗垂死的红巨星喷射出的发光气体组成的不断膨胀的外壳。这颗恒星最终坍缩成一颗密度超高、温度超高的白矮星。行星状星云与行星无关,但之所以叫行星状星云,是因为 1700 年代使用低倍望远镜的天文学家认为这种天体类似行星。M76 由一个环形结构和两个位于环形结构两端的裂片组成。在恒星燃烧殆尽之前,它喷射出了由气体和尘埃组成的环。这个环可能是由曾经有一颗双星伴星的恒星的影响而形成的。这些脱落的物质沿着伴星轨道的平面形成了一个厚厚的尘埃和气体盘。哈勃图像中看不到这颗假想伴星,因此它可能后来被中心恒星吞没了。这个圆盘将成为恒星"吃人"的法医证据。在哈勃望远镜诞生 34 周年之际,它拍摄到了小哑铃星云,展示了哈勃望远镜在宇宙发现和天文研究中的持续作用。图片来源:NASA、ESA、STScI、A. Pagan(STScI)主恒星正在坍缩,形成一颗白矮星。它是已知最热的恒星残骸之一,温度高达炙热的 12万摄氏度,是太阳表面温度的 24 倍。炙热的白矮星可以被看作星云中心的一个针尖。在它下方的投影中可以看到一颗恒星,但它并不是星云的一部分。在圆盘的挤压下,两片热气从"带"的顶部和底部沿着恒星的旋转轴(垂直于圆盘)逸出。它们被来自垂死恒星的飓风般的物质外流推动着,以每小时 200 万英里的速度在太空中撕裂。这个速度足以在七分多钟内从地球飞到月球!这股汹涌澎湃的"恒星风"正在撞击恒星早期喷出的温度较低、流动速度较慢的气体,当时恒星还是一颗红巨星。来自这颗超高温恒星的猛烈紫外线辐射使气体发光。红色来自氮气,蓝色来自氧气。鉴于我们的太阳系已有 46 亿年的历史,按照宇宙学的计时方法,整个星云不过是昙花一现。它将在大约 1.5 万年后消失。自 1990 年发射以来,哈勃已对 53,000 多个天体进行了 160 万次观测。迄今为止,位于马里兰州巴尔的摩市太空望远镜科学研究所的米库尔斯基太空望远镜档案馆保存了 184 TB 经过处理的数据,可供世界各地的天文学家用于科学研究和分析。公共数据的欧洲镜像存放在欧空局欧洲空间天文学中心(ESAC)的欧洲哈勃空间望远镜(eHST)科学档案中。自 1990 年以来,天文学家们根据哈勃观测结果发表了 44,000 篇科学论文。这包括2023年发表的创纪录的1056篇论文,其中409篇由欧空局成员国的作者领导。哈勃望远镜的使用需求量非常大,目前已经超额认购了六倍。在过去一年的科学运行中,利用哈勃取得的新发现包括在迄今为止最小的系外行星的大气层中发现了水,发现了远离任何宿主星系的奇异宇宙爆炸,跟踪了土星环上的辐条,以及发现了迄今为止所见最遥远、最强大的快速射电暴的意外归宿。哈勃对小行星 Dimorphos(2022 年 9 月美国国家航空航天局航天器为改变其轨道而故意碰撞的目标)的研究继续进行,探测到了撞击释放的巨石。这段视频将带领观众领略传奇的NASA/ESA哈勃太空望远镜发射34周年的影像:小哑铃星云(又称Messier 76、M76或NGC 650/651)。这个天体位于3400光年之外的英仙座北圆极星座。这个出镜率极高的星云是业余天文爱好者最喜欢的目标。资料来源:NASA,ESA,STScI,A. Pagan(STScI),鸣谢:D. Crowson, A. Fujii, Digitized Sky Survey哈勃还不断提供壮观的天体目标图像,包括螺旋星系、球状星团和恒星形成星云。一颗新形成的恒星是宇宙灯光秀的源头。哈勃图像还与美国宇航局/欧空局/中科院詹姆斯-韦伯太空望远镜的红外观测相结合,形成了有史以来最全面的宇宙景观之一星系团 MACS 0416 的图像。哈勃的大多数发现都是在发射前没有预料到的,例如超大质量黑洞、系外行星大气层、暗物质引力透镜、暗能量的存在以及恒星间行星形成的丰富性。哈勃将继续在这些领域进行研究,并利用其独特的紫外光能力来研究太阳系现象、超新星爆发、系外行星大气层的构成以及星系的动态辐射等问题。哈勃的研究将继续受益于其对太阳系天体、变星现象和其他奇异的宇宙天体物理学的长期观测。詹姆斯-韦伯太空望远镜的性能特点旨在成为哈勃望远镜的独特补充,而不是替代品。未来的哈勃研究还将利用与韦伯望远镜协同的机会,因为韦伯望远镜是用红外光观测宇宙的。两台太空望远镜的波长覆盖范围互补,共同拓展了原恒星盘、系外行星构成、异常超新星、星系核心和遥远宇宙化学等领域的突破性研究。哈勃太空望远镜已经运行了三十多年,并不断取得突破性的发现,这些发现形成了我们对宇宙的基本认识。哈勃望远镜是美国国家航空航天局(NASA)和欧洲航天局(ESA)之间的一个国际合作项目。美国宇航局位于马里兰州格林贝尔特的戈达德太空飞行中心负责管理望远镜和任务运行。位于科罗拉多州丹佛市的洛克希德-马丁航天公司也为戈达德的任务运行提供支持。位于马里兰州巴尔的摩的太空望远镜科学研究所由天文学研究大学协会运营,为美国国家航空航天局进行哈勃的科学运营。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

破解哈勃张力:韦伯的精确测量揭示了宇宙膨胀之谜

破解哈勃张力:韦伯的精确测量揭示了宇宙膨胀之谜 NGC 5468 是一个距离地球约 1.3 亿光年的星系,这张照片结合了哈勃和詹姆斯-韦伯太空望远镜的数据。这是哈勃发现的最远的仙王座变星星系。它们是测量宇宙膨胀率的重要里程标。根据仙王座变星计算出的距离与该星系中的一颗Ia型超新星相互关联。Ia 型超新星的亮度非常高,它们被用来测量远超过蛇夫座星系范围的宇宙距离,从而将宇宙膨胀率的测量扩展到更深的空间。资料来源:NASA, ESA, CSA, STScI, Adam G. Riess (JHU, STScI)宇宙膨胀的速度,即哈勃常数,是了解宇宙演化和最终命运的基本参数之一。然而,用各种独立的距离指标测得的哈勃常数值与根据宇宙大爆炸余辉预测的值之间存在着持续的差异,这种差异被称为"哈勃张力"(Hubble Tension)。NASA/ESA/CSA 詹姆斯-韦伯太空望远镜证实,哈勃太空望远镜敏锐的目光一直都是正确的,消除了人们对哈勃测量结果的疑虑。哈勃的历史成就建造NASA/ESA 哈勃太空望远镜的科学依据之一是利用其观测能力为宇宙膨胀率提供一个精确的数值。在哈勃望远镜于 1990 年发射之前,地面望远镜的观测结果存在巨大的不确定性。根据推导出的宇宙膨胀率数值,宇宙的年龄可能在 100 亿年到 200 亿年之间。在过去的 34 年中,哈勃已经将这一测量值的精确度缩减到了百分之一以下,将两者的年龄差值缩小到了 138 亿年。哈勃通过测量被称为"仙王座变星"的重要里程碑,完善了所谓的"宇宙距离阶梯",从而实现了这一目标。然而,哈勃值与其他测量结果并不一致,其他测量结果表明宇宙在大爆炸后膨胀得更快。这些观测数据是由欧空局普朗克卫星对宇宙微波背景辐射绘制的地图得出的,宇宙微波背景辐射是宇宙从大爆炸冷却下来后结构演变的蓝图。解决这个难题的简单办法是说,也许哈勃的观测结果是错误的,因为它对深空尺度的测量出现了误差。詹姆斯-韦伯太空望远镜的出现,让天文学家能够核对哈勃的观测结果。韦伯对仙王座的红外观测结果与哈勃的光学数据一致。韦伯证实了哈勃望远镜敏锐的目光一直都是正确的,消除了对哈勃测量结果的任何疑虑。这些并排图像的中心是一种特殊的恒星,它是测量宇宙膨胀速度的里程标仙王座变星。这两幅图像的像素非常高,因为它们是一个遥远星系的放大图。每个像素代表一颗或多颗恒星。詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄的图像在近红外波段要比哈勃望远镜(主要是可见光-紫外光望远镜)清晰得多。通过韦伯更清晰的视野来减少杂波,仙王座就能更清晰地显现出来,消除任何潜在的混淆。韦伯望远镜被用来观测一个仙王座样本,并证实了之前哈勃观测的准确性,而哈勃观测是精确测量宇宙膨胀速度和年龄的基础。图片来源:NASA、ESA、CSA、STScI、Adam G. Riess(JHU、STScI)宇宙奥秘与理论挑战最重要的一点是,与早期宇宙的膨胀相比,近邻宇宙中发生的事情之间所谓的哈勃张力(Hubble Tension)仍然是宇宙学家耿耿于怀的难题。空间结构中可能存在一些我们还不了解的东西。解决这一差异需要新的物理学吗?还是由于确定空间膨胀率的两种不同方法之间存在测量误差?哈勃和韦伯现在已经联手进行了明确的测量,进一步证明了是其他东西而不是测量误差在影响膨胀率。宇宙观测的进展巴尔的摩约翰-霍普金斯大学的物理学家亚当-里厄斯说:"在消除了测量误差之后,剩下的就是我们误解了宇宙这一真实而令人兴奋的可能性。亚当因与他人共同发现了宇宙膨胀正在加速这一事实而获得诺贝尔奖,这一现象现在被称为'暗能量'。"作为交叉检验,2023 年的首次韦伯观测证实,哈勃对膨胀宇宙的测量是准确的。然而,为了缓解"哈勃张力",一些科学家推测,随着我们对宇宙的深入观察,测量中看不见的误差可能会增加并变得明显。特别是,恒星拥挤可能会系统地影响对更遥远恒星亮度的测量。合作验证与未来方向亚当领导的 SH0ES(用于暗能量状态方程的超新星 H0)小组利用韦伯望远镜获得了更多的观测数据,这些天体是关键的宇宙里程碑标记,被称为仙王座变星,现在可以与哈勃数据进行关联。亚当说:"我们现在已经跨越了哈勃观测到的整个范围,我们可以非常有把握地排除测量误差是哈勃张力的原因。"团队在 2023 年进行的前几次韦伯观测成功表明,哈勃在牢固确立所谓宇宙距离阶梯第一级的保真度方面走在了正确的道路上。这幅插图展示了天文学家用来计算宇宙随时间膨胀速度的三个基本步骤,这个值被称为哈勃常数。所有这些步骤都涉及建立一个强大的"宇宙距离阶梯",首先测量附近星系的精确距离,然后再测量越来越远的星系。这个"阶梯"是一系列对不同种类天体的测量结果,研究人员可以利用这些天体的固有亮度来计算距离。对于较短的距离来说,最可靠的是仙王座变星,这些恒星以可预测的速率脉动,从而显示出它们的内在亮度。最近,天文学家利用哈勃太空望远镜观测了附近大麦哲伦云中的 70 个仙王座变星,对该星系进行了最精确的距离测量。天文学家将附近的仙王座变星的测量结果与更远星系的测量结果进行比较,这些星系还包括另一个宇宙尺度被称为Ia型超新星的爆炸恒星。这些超新星比仙王座变星亮得多。天文学家用它们作为"里程标",来测量从地球到遥远星系的距离。每一个标记都建立在"阶梯"的前一步之上。通过使用不同种类的可靠"里程标"来扩展"阶梯",天文学家可以测出宇宙中非常遥远的距离。天文学家将这些距离值与整个星系的光线测量值进行比较,由于空间的均匀膨胀,星系的光线会随着距离的增加而逐渐变红。这样,天文学家就可以计算出宇宙膨胀的速度:哈勃常数。图片来源:NASA、ESA 和 A:NASA, ESA and A. Feild (STScI)宇宙距离阶梯的复杂性天文学家使用各种方法来测量宇宙中的相对距离,具体取决于所观测的天体。这些技术统称为宇宙距离阶梯每一级阶梯或测量技术都依赖于前一级阶梯的校准。但一些天文学家认为,沿着"第二梯级"向外移动,如果仙王座的测量结果随着距离的增加而变得不那么精确,那么宇宙距离的阶梯可能会变得不稳固。出现这种不准确的情况可能是因为仙王座的光线可能会与邻近恒星的光线混合在一起随着距离的增加,这种效应可能会变得更加明显,因为天空中的恒星会挤在一起,彼此变得更加难以区分。观测方面的挑战在于,过去哈勃拍摄的这些更遥远的仙王座变星的图像,在我们和它们的宿主星系之间的距离越来越远时,看起来与邻近的恒星更加拥挤和重叠,因此需要仔细考虑这种效应。中间的尘埃使可见光测量的确定性变得更加复杂。韦伯望远镜能穿过尘埃,自然地将倒灶系恒星与邻近恒星隔离开来,因为它在红外波段的视力比哈勃望远镜更敏锐。"韦伯望远镜和哈勃望远镜的结合为我们提供了两全其美的解决方案。我们发现,当我们沿着宇宙距离阶梯爬得更远时,哈勃的测量结果仍然是可靠的,"亚当说。新的韦伯观测结果包括八个 Ia 型超新星的五个宿主星系,共包含 1000 个蛇夫座天体,并延伸到蛇夫座天体测量结果最远的星系距离 1.3 亿光年的 NGC 5468。"这横跨了我们用哈勃测量的全部范围。因此,我们已经走到了宇宙距离阶梯第二级的尽头,"合著者、巴尔的摩太空望远镜科学研究所的加甘迪普-阿南德(Gagandeep Anand)说,该研究所为美国国家航空航天局(NASA)运营韦伯望远镜和哈勃望远镜。哈勃和韦伯对"哈勃张力"的确认,... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人