太阳磁极将在两年内反转

太阳磁极将在两年内反转 实际上,除了11年一次的太阳活动周期,太阳还有22年一次的海尔周期(Hale Cycle),指的就是太阳磁极反转并复原的周期。太阳有两类磁场,一类叫普遍磁场,另一类是活动区磁场。这里说的太阳磁场,指的是太阳的普遍磁场。在太阳活动极小期,太阳磁场与地球磁场的形态相似,都有南北两个对称的磁极。但随着太阳的逐渐活跃,太阳的磁场会变得越来越混沌复杂,南北磁极对称分布的特点会越来越模糊。据预测,这一次太阳磁极的反转可能会在2024年末至2026年之间发生。磁极反转后,太阳的南磁极将出现在太阳的北极附近,北磁极将出现在南极附近。这样的指向与今天的地球磁场指向是一样的。今天地球南北磁极也分别位于地球的地理北极和地理南极附近。太阳磁极的反转,看起来与太阳黑子的活动有关。黑子不但能够诱发多种太阳活动,如耀斑和日冕物质抛射;还会产生极为复杂的活动区磁场,并最终触发太阳普遍磁场的反转。极大期时的太阳和极小期时的太阳。极大期时太阳表面黑子数量很多,而极小期时黑子很少甚至没有。Future当黑子大部分集中在太阳赤道附近时,太阳普遍磁场的形态通常是偶极对称的;但随着黑子聚集区越来越靠近两极,太阳磁场的形态就会越来越趋向于复杂混沌。当这种混沌达到一定程度后,随之而来的就是磁极的反转。太阳磁极的反转并不是在瞬间完成的,而是一个渐变的过程。它会先从偶极磁场转化为一个复杂的非偶极磁场,然后再还原为一个极性相反的偶极磁场。这和地球磁场的反转方式不同。地球磁场反转需要几百上千年,而太阳磁极的反转在几年内就可以完成。导致太阳磁极反转的深层原因依然是谜。与太阳磁场反转的许多问题至今仍得不到解释。与太阳磁极反转密切关联的,是太阳活动强度的变化。随着太阳磁场的形态越来越复杂,太阳活动的极大期也伴随而至。但除此之外,太阳磁极的反转通常并不会带来灾难。在某些方面,太阳磁极的反转甚至还有好处。比如太阳磁极反转会导致太阳日光层电流片(heliospheric current sheet )起伏波动。而这能够使其更有效地抵御宇宙射线对地球的侵袭。宇宙射线是来自深空的高能粒子。这些以近光速飞行的粒子,会给航天器和宇航员带来伤害。太阳日光层电流片示意图。太阳磁极反转时,电流片会起伏波动。NASA科学家还发现,太阳磁极反转过程的长短,对太阳周期的活跃程度可能有一定影响。假如它在几年内就能够完成反转,恢复到偶极状态,那么下一个太阳周期可能会比较活跃;而假如持续时间较长,那么下一个太阳周期可能会比较平静。参考The sun's magnetic field is about to flip. Here's what to expect.https:// ... PC版: 手机版:

相关推荐

封面图片

NOAA的GOES卫星观测到明显的太阳活动 包括强大的地磁暴

NOAA的GOES卫星观测到明显的太阳活动 包括强大的地磁暴 GOES-16 太阳 X 射线传感器是卫星 EXIS 仪器的一部分,用于测量 X 射线辐照度(即亮度)。这幅图显示了通量在 3 月 23 日期间的变化情况。尖锐的峰值与不同等级的太阳耀斑相对应。数据缺口是由于地球从卫星和太阳之间穿过造成的。资料来源:美国国家海洋和大气管理局这次CME于美国东部时间3月24日星期日上午10点37分(格林尼治标准时间14点37分)到达我们的星球,引发了一场严重的G4级地磁暴,标志着自2017年以来最强烈的太阳风暴。不过,根据美国国家海洋和大气管理局空间天气预报中心的地磁风暴观察,公众没有理由感到恐慌。地磁暴又称太阳风暴,会扰乱地球磁场,并可能影响地球上的电网以及无线电信号和通信系统。它们还可能影响我们的卫星运行和GPS导航能力。此外,太空中的宇航员在这些事件中必须格外小心,尤其是在进行太空行走时。在地球的保护大气层之外,他们接触到的额外相关辐射可能会导致辐射中毒或其他有害健康的影响。NOAA 将地磁暴分为 G1 到 G5 级。G5 级风暴是最极端的级别,可导致地球向阳面的高频无线电完全停电,持续数小时。3 月 24 日,美国国家海洋和大气管理局(NOAA)发布了地磁风暴警报,称地磁风暴等级已达到 G1 到 G4,南至阿拉巴马州,北至加利福尼亚州都可能看到极光。据报道,由于这次风暴,加拿大的电网出现了异常。当前太阳周期和预测我们目前正处于太阳周期 25。太阳周期几乎是太阳活动的周期性变化,从太阳活动最小期(太阳黑子最少,太阳活动较弱)到太阳活动最大期(太阳黑子最多,太阳活动较强),再回到太阳活动最小期,一般需要 11 年左右的时间。有时太阳表面非常活跃,有很多太阳黑子,而有时则比较平静,只有几个甚至没有。在接近太阳最大值时,像周日到来的这种地磁暴每年会袭击地球几次。目前,我们正接近太阳周期 25 的最大值,12 月,多年来最大的太阳耀斑扰乱了无线电通信。在太阳活动最小周期,地磁风暴可能会间隔几年。据美国国家海洋和大气管理局(NOAA)空间天气预报中心(SWPC)称,修订后的预测认为,太阳活动在太阳周期25期间将比专家小组在2019年12月预测的增加得更快,达到的峰值也更高。最新预测认为,太阳周期25将在2024年1月至10月达到峰值,最大太阳黑子数在137至173之间。太阳能监测技术的进步NOAA 卫星帮助监测太阳活动以及太阳耀斑或日冕物质抛射发生的时间。由于这些事件的发生难以预料,而且有些会在几分钟内到达地球,因此 NOAA 的空间天气预报中心利用这些信息来监测太阳活动,并做出预测、预报和警报。为了帮助实现这一目标,GOES 卫星还安装了极端紫外线和 X 射线辐照度传感器(EXIS),用于监测太阳的电磁辐射,并作为耀斑发生时的重要预警系统;空间环境原位套件(SEISS),用于帮助评估静电放电风险以及对宇航员和卫星的辐射危害;以及磁强计,用于测量地球磁场。您知道 NOAA 的最新卫星 GOES-U 将携带一种研究日冕的新仪器,称为紧凑型日冕仪 (CCOR-1)吗?该仪器将通过遮挡太阳光来研究日冕。这类似于日全食,即月亮移到太阳前面。CCOR-1 将有助于探测和描述 CME,并作为即将发生的地磁暴的主要信息来源。说到日食,千万不要错过 2024 年 4 月 8 日在墨西哥、美国和加拿大部分地区出现的日食!编译自:ScitechDaily ... PC版: 手机版:

封面图片

国家卫星气象中心:今明两年为太阳活动高峰年 还会发生地磁暴

国家卫星气象中心:今明两年为太阳活动高峰年 还会发生地磁暴 当前太阳正处于第25太阳活动周,本轮太阳活动周已经进入峰年阶段,2024年3月太阳黑子数月平均值为104.9。根据中国气象局国家空间天气监测预警中心的最新研判,本轮太阳活动周的峰值预计在2024年至2025年到来。目前正处于峰值附近,太阳表面上的黑子数逐渐增多,因此太阳活动较为频发,这属于正常的自然现象。当地磁暴发生后,会造成在轨航天器飞行阻力升高,最终导致航天器轨道快速下降。对于航空系统,空间天气事件的影响主要集中于通信、导航等方面,在太阳发生剧烈爆发时,跨极区飞行等特殊航线可能需要调整。不过,地磁暴事件对人们身体健康和日常生活的影响微乎其微,大家保持平常心即可。 ... PC版: 手机版:

封面图片

官方发布黄色预警:未来3天太阳仍有可能爆发M/X级以上耀斑

官方发布黄色预警:未来3天太阳仍有可能爆发M/X级以上耀斑 该现象是指,太阳表面抛洒出大量高能物质,造成了地球磁场的严重扰乱,有大有小。据悉,日冕物质抛射的级别分为A、B、C、M、X五个级别,其中A为最小级别,X为最大级别。太阳耀斑会影响向阳面的地球电离层,短波通信、导航定位以及海上搜救,还有一些应急通信,都是跟电离层状态息息相关。这一类灾害正随着人类太空科技的进步而逐渐凸显出来,尤其是对卫星、航天器安全,以及航空、通信、导航等领域产生影响和危害。不过,由于地球大气层和磁场的保护,其对地面人员的影响通常是有限的。但有医生指出,太阳活动和磁场干扰的增加,可能会引起老年人的血压变化,最近几天,对于高血压高危群体,应做好血压监测。对于普通公众,这类太阳活动不会造成可观的直接危险。 ... PC版: 手机版:

封面图片

NASA太阳动力学天文台再次捕捉到两个X级太阳耀斑

NASA太阳动力学天文台再次捕捉到两个X级太阳耀斑 美国国家航空航天局的太阳动力学天文台于 6 月 1 日拍摄到了这两幅太阳耀斑的图像在图像中心附近可以看到明亮的闪光。这些图像显示了极紫外光的一个子集,它突出显示了耀斑中的极热物质,并被染成蓝色和金色。图片来源:NASA/SDO太阳耀斑是太阳发出的强大辐射脉冲,尤其是来自磁场高度集中的太阳黑子周围的活跃区域。这些耀斑发生时,积聚的磁场能量会突然以辐射的形式释放出来,辐射范围几乎涵盖整个电磁波谱从无线电波到 X 射线和伽马射线。太阳耀斑的强度分为三类:C、M 和 X,其中 C 是最弱的,X 是最强的。每个类别都有一个从 1 到 9 的等级,进一步量化耀斑的威力。X 级耀斑会对地球造成严重破坏,影响卫星通信、导航系统和电网。太阳耀斑通常与日冕物质抛射(CMEs)有关,这是太阳活动的另一种形式,数十亿吨太阳粒子被抛射到太空中。这可能会导致地磁暴,当与地球磁场相互作用时,可能会产生壮观的极光或南北极光。了解太阳耀斑对于预测空间天气事件至关重要,有助于做好准备,保护地球上的技术系统和基础设施免受这些太阳现象的潜在不利影响。美国宇航局太阳动力学天文台美国国家航空航天局(NASA)的太阳动力学天文台(SDO)是一项致力于通过在小尺度空间和时间范围内同时以多种波长研究太阳大气来了解太阳对地球和近地空间影响的任务。SDO于2010年2月11日发射升空,是美国国家航空航天局"与星共存"(LWS)计划的一部分。该观测站配备了一套仪器,通过观测可以更全面地了解驱动地球环境变化的太阳动力学。星载主要仪器之一是大气成像组件(AIA),它能以多种波长捕捉日冕和色球层的高分辨率图像,以更好地了解太阳辐射的输出及其对我们大气层的影响。另一个重要仪器日震和磁场成像仪(HMI)绘制太阳磁场图,并利用日震学窥探太阳不透明表面下的情况,以详细了解太阳内部动态。同时,极端紫外线变异实验(EVE)以前所未有的精度测量太阳的紫外线输出,这对于了解地球电离层和热层的变化至关重要。通过提供几乎连续不断的数据流,SDO 在我们预测空间天气事件的能力方面发挥着至关重要的作用,有助于减轻空间天气事件对空间和地面技术系统的影响。SDO 的详细观测有助于增进我们对太阳大气活动及其对空间天气影响的了解。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

国际空间站的宇航员在太空拍到由太阳活动引起的地球南极光

国际空间站的宇航员在太空拍到由太阳活动引起的地球南极光 当来自太阳的高能粒子束恰巧指向地球的话,在地球磁场的作用下,高能粒子会被引导到南极和北极,因此在高纬度的极低区域会出现高能粒子与地球大气层相互作用而产生的极光。下面的图片是国际空间站宇航员 Jasmin Moghbeli 在 2024 年 2 月 15 日拍摄的地球南极极光照片,照片中右侧部分是 Canadaarm2 (移动维修系统的主要机器人加拿大臂 2),左侧就是空间站的模块之一。 ... PC版: 手机版:

封面图片

科学家在一个太阳黑子上方发现了类似地球极光的无线电辐射

科学家在一个太阳黑子上方发现了类似地球极光的无线电辐射 科学家在一个太阳黑子上方发现了类似地球极光的无线电辐射。图中粉色-紫色条纹代表无线电辐射,粉色代表频率较高的无线电信号,距离太阳黑子较近;紫色代表频率较低的无线电信号。细线代表太阳黑子上方的磁场线。太阳黑子是太阳底部的黑暗区域。资料来源:Sijie Yu这种射电暴以前只在行星和其他恒星上观测到过,而在太阳黑子太阳上一个相对凉爽、黑暗、磁性活跃的区域上方约 25,000 英里(40,000 公里)处被探测到。位于纽瓦克的新泽西理工学院的余思杰(Sijie Yu)说:"这种太阳黑子射电发射是首次探测到,"他是2024年1月出版的《自然-天文学》(Nature Astronomy)上一篇报道这一发现的论文的第一作者。这项研究于 2023 年 11 月首次在线发表。这一发现可以帮助我们更好地了解我们自己的恒星,以及产生类似射电辐射的遥远恒星的行为。洞察太阳和恒星现象太阳经常发射持续几分钟或几小时的短射电暴。但 Yu 的团队利用新墨西哥州的 Karl G. Jansky 超大阵列探测到的射电暴却持续了一个多星期。这些太阳黑子射电暴还具有其他特征例如它们的光谱(或不同波长的强度)和偏振(无线电波的角度或方向)更像是地球极区和其他有极光的行星产生的无线电辐射。在这张美国宇航局太阳动力学天文台于2016年4月11日拍摄的太阳图像中,科学家们在左上方看到的大黑子上方探测到了类似极光的射电爆发。图片来源:NASA/太阳动力学天文台在地球(以及木星和土星等其他行星)上,当太阳粒子被行星磁场卷入,并被拉向磁场线汇聚的两极时,极光就会在夜空中闪烁。当它们向极地加速时,这些粒子会产生频率约为几百千赫兹的强烈无线电辐射,然后撞击大气层中的原子,使它们发出极光。Yu 团队的分析表明,太阳黑子上方的射电暴很可能是以类似的方式产生的当高能电子被太阳黑子上方的汇聚磁场困住并加速时。但与地球极光不同的是,太阳黑子产生的射电暴频率要高得多从数十万千赫兹到大约一百万千赫兹。这是太阳黑子磁场比地球磁场强数千倍的直接结果。扩大对恒星活动的了解此前在某些类型的低质量恒星上也观测到过类似的射电辐射。这一发现提供了一种可能性,即除了之前提出的极区极光之外,类似极光的射电辐射可能来自这些恒星上的大光斑(称为"星斑")。"这一发现令我们兴奋不已,因为它挑战了太阳射电现象的现有概念,为探索太阳和遥远恒星系统中的磁活动开辟了新途径。NASA不断壮大的太阳物理学舰队非常适合继续调查这些射电暴的源区,"NASA戈达德太空飞行中心的太阳物理学家和太阳射电研究员Natchimuthuk Gopalswamy说。"例如,太阳动力学天文台持续监测太阳的活跃区域,这些区域很可能会产生这种现象"。与此同时,Yu 的研究小组计划重新研究其他太阳射电暴,看看是否有与他们发现的极光样射电暴类似的太阳射电暴。他说:"我们的目标是确定以前记录的一些太阳射电暴是否可能是这种新发现的发射的实例。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人