最新设立的SETI新拨款可能会影响对地外信号探测技术的探索

最新设立的SETI新拨款可能会影响对地外信号探测技术的探索 SETI 研究所启动了一项新的资助计划,利用艾伦望远镜阵列(ATA)这一探索地外技术的重要观测站,支持技术特征科学的发展。该计划是首个此类计划,将资助从观测技术到理论模型的技术信号科学研究,资助对象包括非终身教职员工和研究生。资料来源:SETI 研究所这项开创性研究的核心是艾伦望远镜阵列(ATA),这是一个世界级的仪器,以其在搜寻地外智慧生命方面的能力而著称。艾伦望远镜阵列是第一个,也是目前唯一一个专门为开展 SETI 研究而建造的天文台。凭借升级后的馈送和后台处理能力,ATA 的先进技术和战略设计使其成为探测潜在技术信号的关键工具,巩固了其在这一科学前沿领域的领先地位。SETI研究所伯纳德-奥利弗(Bernard M. Oliver)SETI讲座教授安德鲁-西米恩博士(Dr. Andrew Siemion)说:"在过去的几年里,技术特征科学领域开辟了大量新的研究途径,新思路、新技术和快速成长的早期研究人员群体使之成为可能。这项资助计划促成的新颖研究将推动技术特征领域的发展,延续 SETI 研究所 40 年来在 SETI 科学领域的领导地位。"技术特征科学与技术资助计划邀请两个不同类别的首席研究员(PI)提出申请:有资格担任大学或非营利组织首席研究员的非终身教职员工或研究人员,奖励金额最高可达 10 万美元,包括管理费。 已完成初步考试的硕士或博士学位研究生,其唯一剩余的学位要求是论文或同等学历,奖励金额最高可达 2.5 万美元,包括管理费。受资助的研究必须以技术特征科学为重点,包括但不限于以下广泛的主题:探测技术特征的观测计划或观测技术和策略的开发 预测或解释技术特征现象的理论模型提高探测和分析技术特征能力的技术创新 社会科学与技术特征研究交叉领域的研究,探索与寻找技术特征相关的社会影响和人为因素2024 年资助申请截止日期为 2024 年 7 月 15 日。成功的申请者将在 2024 年 8 月 5 日前收到通知。欲了解更多信息和说明,请访问以下链接: ... PC版: 手机版:

相关推荐

封面图片

SETI椭球体新技术大大改进了对遥远外星文明信号的搜索能力

SETI椭球体新技术大大改进了对遥远外星文明信号的搜索能力 SETI椭球体是一种选择潜在技术信号候选者的战略方法,它基于这样一种假设:地外文明在观测到诸如超新星1987A等重大银河系事件时,可能会将这些事件作为一个焦点,发射同步信号来宣布它们的存在。在这项工作中,研究人员表明,SETI椭球体方法可以利用连续、宽视场的巡天观测,大大提高我们探测这些潜在信号的能力。通过利用长达一年的观测来补偿此类信号到达时间估计值的不确定性,研究小组以创新的方式利用最先进的技术实施了 SETI 椭圆体策略。SETI 椭圆体。资料来源:Zayna Sheikh加强技术特征检测"新的巡天观测为寻找与超新星协调的技术特征提供了开创性的机会,"合著者巴尔巴拉-卡布拉尔斯(Bárbara Cabrales)说。"所涉及的时间不确定性通常为几个月,因此我们希望在一年左右的时间里找到有据可查的目标,以覆盖我们的基础。除此之外,对每个感兴趣的目标进行尽可能多的观测也很重要,这样我们才能确定哪些是正常行为,哪些可能是潜在的技术特征。"TESS 连续观测区的数据占 TESS 任务头三年所有数据的 5%,研究人员利用 Gaia 早期数据第 3 版提供的高级三维定位数据,对 TESS 连续观测区的数据进行了检查。这项分析在TESS连续观测区南部的SETI椭球范围内确定了32个主要目标,所有目标的不确定性都被细化到优于0.5光年。虽然在椭球面穿越事件期间对 TESS 光曲线的初步检查没有发现异常,但这一举措奠定的基础为将搜索扩展到其他巡天观测、更广泛的目标阵列以及探索各种潜在信号类型铺平了道路。SETI 研究的未来前景应用SETI椭球体技术仔细检查大型档案数据库,标志着在寻找技术信号方面向前迈出了重要的一步。利用盖亚高度精确的距离估计,该研究证明了将这些距离与 TESS 等其他时域勘测进行交叉匹配的可行性,从而提高 SETI 研究的监测和异常检测能力。SETI椭球面方法与盖亚的距离测量相结合,为未来的SETI搜索提供了一个强大的、可调整的框架。研究人员可以回顾性地应用它来筛选潜在信号的档案数据,主动选择目标,并安排未来的监测活动。"正如吉尔-塔特博士经常指出的,SETI搜索就像是在9D干草堆中寻找一根针,"合著者索菲亚-谢赫博士(Dr. Sofia Sheikh)说。"任何能够帮助我们确定搜索优先顺序的技术,比如SETI椭球体,都有可能为我们找到草堆中最有希望的部分提供捷径。这项工作是搜索参数空间中那些新发现的部分的第一步,为即将开展的大型勘测项目(如 LSST)开创了令人兴奋的先例。"在人类不断探索宇宙奥秘的过程中,SETI 研究所始终站在最前沿,利用 SETI 椭圆体等创新技术来缩小宇宙距离,并与星际中的潜在文明建立联系。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

“中国天眼”探测到纳赫兹引力波存在关键证据

“中国天眼”探测到纳赫兹引力波存在关键证据 据中新社报道,记者从中国科学院国家天文台获悉,这项纳赫兹引力波研究重要成果论文,星期四(6月29日)在中国天文学术期刊《天文与天体物理研究》(RAA)在线发表。 作为引力波的一种,对频率低至纳赫兹的引力波进行探测,将有助于天文学家理解宇宙结构的起源,探测宇宙中最大质量的天体即超大质量黑洞的增长、演化及并合过程,也有助于物理学家洞察时空的基本物理原理。 中科院国家天文台说,后续将充分发挥FAST脉冲星测时精度国际领先优势,加快纳赫兹引力波探测科研攻关,积累更长期的观测数据,逐步发表更高精度的探测结果,打开人类利用纳赫兹引力波探测宇宙的新窗口。 同时,该台还将积极推进FAST扩展和升级,基于脉冲星测时阵列方法,实现纳赫兹引力波事件的常规观测,从而建成纳赫兹引力波天文台,并开启更高灵敏度和更高分辨率的低频射电观测研究新纪元,将中国加快建设成为引力波天文和射电天文强国。

封面图片

突破性的雷达波干扰技术大大提高了探测分辨率

突破性的雷达波干扰技术大大提高了探测分辨率 这项首次原理验证实验开辟了一个新的研究领域,其许多可能的应用会对价值数十亿美元的雷达产业产生颠覆性的影响。在理论和实验方面都有许多新的研究方向。这一发现解决了一个长达九十年之久的问题,即科学家和工程师通常需要牺牲雷达的细节和分辨率来换取观测距离无论是在水下、地下还是空中。以前的限制将物体之间的距离估计为无线电波波长的四分之一,而这项技术仅利用雷达波就提高了物体之间的距离分辨率。《物理评论快报》上发表的这篇文章的主要作者约翰-豪威尔(John Howell)说:"我们相信,这项工作将开辟大量新的应用领域,并改进现有技术。高效的人道主义排雷或进行高分辨率、非侵入性医疗传感的可能性非常诱人。"豪威尔和来自查普曼大学量子研究所、希伯来大学、耶路撒冷大学、罗切斯特大学、周长研究所和滑铁卢大学的研究人员组成的研究小组证明,量程分辨率比人们长期以来认为的极限高出 100 多倍。这一成果打破了分辨率与波长之间的权衡,使操作人员能够使用长波长,并获得高空间分辨率。研究人员通过使用具有陡峭梯度和零时间梯度的函数,证明有可能通过测量波形的极小变化来精确预测两个物体之间的距离,同时还能抵御吸收损失。对于考古学家来说,这就创造了区分地下深处一枚硬币和一块陶器碎片的能力。这一突破性想法依赖于特别制作的波形的叠加。当无线电波从两个不同的表面反射时,反射的无线电波相加形成新的无线电波。研究小组利用专门设计的脉冲来产生一种新的叠加脉冲。这种复合波具有独特的亚波长特征,可用来预测物体之间的距离。"在无线电工程中,干扰是一个负面的词,被认为是一种有害效应。在这里,我们扭转了这种态度,利用波干扰效应打破了雷达测距的长期限制,其幅度达到了数量级,"查普曼大学量子研究主任安德鲁-乔丹(Andrew Jordan)说。"在远程雷达传感中,只有少量的电磁辐射会返回到探测器。我们设计的定制波形具有自参照的重要特性,因此可以将目标的特性与信号损失区分开来"。豪威尔补充说:"我们现在正在努力证明,不仅可以测量两个物体之间的距离,还可以测量许多物体的距离,或者对表面进行详细的特征描述。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天体物理学家发现新的引力波探测方法 探索宇宙最深处的奥秘

天体物理学家发现新的引力波探测方法 探索宇宙最深处的奥秘 科大物理系刘教授团队提出的突破性概念,可让地球磁层中的单个天文望远镜成为全球变暖信号的探测器。资料来源:香港科技大学在香港科技大学物理系副教授刘涛教授的领导下,研究小组的创新方法可以利用行星磁层中现有的、技术上可行的天文望远镜成功探测高频引力波。这将为以有效和技术可行的方式研究早期宇宙和剧烈宇宙事件开辟新的可能性。引力波(GW)由各种天文现象产生,如早期宇宙的相变和原始黑洞的碰撞。然而,引力波的影响极其微弱,目前只能通过干涉测量法在相对较低的频段发现引力波。因此,利用全球升温潜能值观测宇宙面临着巨大的技术挑战,特别是在探测一千赫以上的高频段时,干涉测量法的使用受到很大限制。为了解决这一难题,刘涛教授和他的博士后研究员张晨博士与中国科学院高能物理研究所的任静研究员合作,在最近的研究中取得了重大突破。这项研究利用了一个有趣的物理效应:驻留在磁场中的全球瓦可以转化为潜在的可探测电磁波。通过利用行星磁层内的延伸路径,转换效率得以提高,从而产生更多的电磁波信号。对于具有宽视场的望远镜来说,由于这种行星实验室内的信号通量具有广阔的角度分布,因此探测能力可以得到进一步提高。这种创新方法可使单个天文望远镜充当全球变暖信号的探测器。通过组合多个望远镜,可以实现高频全球变暖频率的广泛覆盖,从兆赫兹到1028赫兹不等。这一频率范围相当于天文观测中使用的电磁波谱,其中有很大一部分是以前在探测 GW 时从未探索过的。这项研究对低地球轨道卫星探测器和木星磁层内正在进行的任务的灵敏度进行了初步评估。这项研究发表在今年 3 月的《物理评论快报》上,随后,《自然- 天文学》在 5 月发表了一篇题为"行星大小的实验室提供了宇宙学见解"的文章,重点介绍了这项研究。这强调了这项研究在为未来新型全球变暖探测技术研究铺平道路方面的重要意义。编译来源:ScitechDailyDOI: 10.1103/PhysRevLett.132.131402DOI: 10.1038/s41550-024-02285-w ... PC版: 手机版:

封面图片

研究人员用更快的引力波探测技术揭示宇宙奥秘 反应时间仅需30秒

研究人员用更快的引力波探测技术揭示宇宙奥秘 反应时间仅需30秒 这项研究的目标是在探测到中子星和黑洞后 30 秒内向天文学家和天体物理学家发出警报,帮助人们更好地了解中子星和黑洞,以及包括金和铀在内的重元素是如何产生的。这些研究成果最近发表在《美国国家科学院院刊》(PNAS)上,这是一份经同行评审、开放获取的科学杂志。引力波与时空的相互作用是在一个方向上压缩时空,而在垂直方向上拉伸时空。这就是为什么目前最先进的引力波探测器是 L 型的,并使用干涉测量法测量激光的相对长度,干涉测量法是一种观察两个光源结合产生的干涉图案的测量方法。探测引力波需要精确测量激光的长度:相当于测量距离最近的恒星(约四光年)的距离,精确到一根头发丝的宽度。该图显示了研究人员发出警报所需的时间,平均不到 30 秒。图片来源:安德鲁-托伊沃宁这项研究是全球引力波干涉仪网络LIGO-Virgo-KAGRA(LVK) 协作的一部分。在最新的模拟活动中,使用了以前观测时段的数据,并添加了模拟引力波信号,以显示软件和设备升级的性能。该软件可以检测信号的形状,跟踪信号的表现,并估计事件中包括哪些质量,如中子星或黑洞。中子星是已知存在的最小、密度最大的恒星,是大质量恒星在超新星中爆炸时形成的。一旦该软件探测到引力波信号,它就会向用户(通常包括天文学家或天体物理学家)发送警报,告知信号在天空中的位置。随着这一观测时段的升级,科学家们能够在探测到引力波后更快地发送警报,时间不超过 30 秒。"有了这个软件,我们就能探测到中子星碰撞产生的引力波,这种引力波通常太微弱,除非我们知道确切的观测位置,否则是无法看到的,"明尼苏达大学双城分校物理与天文学院博士生安德鲁-托伊沃宁(Andrew Toivonen)说。"首先探测到引力波将有助于确定碰撞的位置,帮助天文学家和天体物理学家完成进一步的研究"。天文学家和天体物理学家可以利用这些信息来了解中子星的行为方式,研究中子星和黑洞碰撞时的核反应,以及包括金和铀在内的重元素是如何产生的。这是使用激光干涉仪引力波天文台(LIGO)进行的第四次观测,它将一直观测到 2025 年 2 月。在前三次观测期间,科学家们对信号的探测进行了改进。本次观测结束后,研究人员将继续查看数据并做出进一步改进,目标是更快地发出警报。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家可能在海底探测到有记录以来最强中微子

科学家可能在海底探测到有记录以来最强中微子 中微子物理学家 João Coelho 透露,地中海在建的宇宙深渊天体粒子研究(ARCA)天文台可能发现了有史以来能量最高的中微子。ARCA是欧洲立方千米中微子望远镜(KM3NeT)项目的一部分。KM3NeT 的主要目标是发现并持续观察宇宙中的高能中微子的来源,测定中微子的质量等级。ARCA 被部署在意大利西西里岛东南3500米深的海底,由串联有光学模块的垂直绳弦阵列构成。每根绳弦长 800 米,串联有 18 个探测器单元直径约为半米的有机玻璃球,内置光探测器,每个探测器只能探测到很少的光子。目前阵列内包含 28 串绳弦,ARCA 团队希望到 2028 年能将其扩展到 230 串。它并不能直接“看”到中微子。当中微子撞击空气、水或下层岩石分子时,产生一种高能带电粒子μ子,当它穿过探测器时,会产生其他带电粒子簇射,从而被捕捉到。Coelho 表示,超过 1/3 的 ARCA 传感器记录到了与 μ子水平穿过探测器一致的闪光。这些μ子由来自低于水平线一度的中微子产生。该粒子的能量可能高达数十 PeV,这将使其成为有史以来探测到的能量最高的中微子。 via Solidot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人