距地球3.6亿光年超大黑洞苏醒 开始吞噬周围一切物质

距地球3.6亿光年超大黑洞苏醒 开始吞噬周围一切物质 研究称,这个超大黑洞位于SDSS1335+0728星系,距离地球大约3.6亿光年;星系直径约为5.2万光年,总质量相当于100亿个太阳大小。参与研究的欧美科学家称,黑洞所在的星系在过去数十年均未出现异常,直到2019年12月,美国科学家发现该黑洞所在星系亮度突然上升。而该星系的亮度,是由其中的超大质量黑洞驱动的,黑洞以SDSS1335+0728星系周围的气体为食时,不断增长的物质被黑洞拉了进来,使星系发光。并且,黑洞能够吞噬一切物质,如果一颗恒星运动到其附近,可能会被强大的潮汐力所撕裂并被吸积,被“吞噬/撕裂”,这种现象称作黑洞潮汐撕裂恒星事件。至于是什么触发了这次黑洞的觉醒,目前科学界尚无定论。有理论认为,这可能是星系生命周期中自然发生的活跃周期,可能涉及恒星接近并落入黑洞的事件。此外,银河系中心的人马座A*,也存在着一个距离我们约2.6万光年、质量为太阳400万倍的超大质量黑洞,目前相对平静,不过,不排除未来它也会发生类似觉醒的可能。 ... PC版: 手机版:

相关推荐

封面图片

天文学家实时观测黑洞的苏醒

天文学家实时观测黑洞的苏醒 2019 年末,此前不显眼的室女座星系 SDSS1335+0728 突然变得明亮许多。天文学家随后利用太空和地面望远镜跟踪了其亮度变化。根据发表在《Astronomy & Astrophysics》期刊上的研究,天文学家认为我们正在实时目睹一个超大质量黑洞的苏醒。超新星爆发等天文现象会让星系变得明亮,但通常只会持续几十天,最多数百天,而 SDSS1335+0728 的变亮持续至今,已有四年多时间,还在越来越亮。该星系距离地球 3 亿光年,2019 年 12 月加州 Zwicky Transient Facility 天文台观测到了它突然变亮,后续观测发现其中红外波长亮度增加了一倍,紫外线亮度增加了四倍,X 射线范围亮度至少增加 10 倍。变亮原因被认为是“活跃星系核”的形成,即星系中心的巨大黑洞在消耗周围的物质。 via Solidot

封面图片

美国麻省理工学院近日发布公报说,该校研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞噬恒星的潮汐瓦解事件,使附近宇宙

美国麻省理工学院近日发布公报说,该校研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞噬恒星的潮汐瓦解事件,使附近宇宙空间中已知的这类事件数量增加了一倍多。 相关论文发表在新一期美国《天体物理学杂志》上。 新华社报道,潮汐瓦解事件(Tidal disruption event)是宇宙中一种高能爆发现象,即恒星距离超大质量黑洞过近时,被黑洞产生的潮汐力吸入并撕裂的事件。当黑洞享用“恒星盛宴”时,会在电磁波谱多个波段释放巨大能量。此前,科学家主要通过在可见光和X射线波段寻找具有典型特征的爆发来探测潮汐瓦解事件,并已经在地球附近的宇宙中发现十几起这类事件。 这项新研究利用红外观测数据从星系中找到更多这类事件。研究人员对美国广域红外线巡天探测卫星所获的观测数据进行了分析,利用特定算法识别出来自约1000个星系的红外爆发信号,这些星系分布在距地球六亿光年范围内。随后,研究人员放大了上述每个星系的红外爆发信号,从中寻找符合潮汐瓦解事件特征的红外辐射模式,最终发现18个清晰的潮汐瓦解事件信号。 此外,研究人员将新发现的潮汐瓦解事件与此前观测结果结合起来估计,一个星系大约平均每五万年就会经历一次黑洞吞噬恒星的潮汐瓦解事件。 标签: #黑洞 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

研究人员新发现18起黑洞吞噬恒星事件

研究人员新发现18起黑洞吞噬恒星事件 美国麻省理工学院近日发布公报说,该校研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞噬恒星的潮汐瓦解事件,使附近宇宙空间中已知的这类事件数量增加了一倍多。 相关论文发表在新一期美国《天体物理学杂志》上。 新华社报道,潮汐瓦解事件(Tidal disruption event)是宇宙中一种高能爆发现象,即恒星距离超大质量黑洞过近时,被黑洞产生的潮汐力吸入并撕裂的事件。当黑洞享用“恒星盛宴”时,会在电磁波谱多个波段释放巨大能量。此前,科学家主要通过在可见光和X射线波段寻找具有典型特征的爆发来探测潮汐瓦解事件,并已经在地球附近的宇宙中发现十几起这类事件。 这项新研究利用红外观测数据从星系中找到更多这类事件。研究人员对美国广域红外线巡天探测卫星所获的观测数据进行了分析,利用特定算法识别出来自约1000个星系的红外爆发信号,这些星系分布在距地球六亿光年范围内。随后,研究人员放大了上述每个星系的红外爆发信号,从中寻找符合潮汐瓦解事件特征的红外辐射模式,最终发现18个清晰的潮汐瓦解事件信号。 研究人员说,新发现有助于解答关于潮汐瓦解事件研究的几个关键问题。过去,潮汐瓦解事件大多在所谓的“星暴后星系”中观测到,这是一类曾因大量恒星形成而“光芒四射”但之后已冷却下来的罕见星系。这项新研究在尘埃星系等其他类型的星系中发现了潮汐瓦解事件,表明黑洞可以吞噬一系列星系中的恒星,而不仅仅是“星暴后星系”中的恒星。 研究结果还解释了“能量缺失”问题。物理学家曾从理论上预测,潮汐瓦解事件辐射的能量应比实际观测到的更多。该研究认为,如果潮汐瓦解事件发生在尘埃星系中,或许可以解释这种能量差异。尘埃不仅可以吸收可见光和X射线,还可以吸收极紫外波段辐射,其吸收的能量相当于预测的“缺失能量”。 此外,研究人员将新发现的潮汐瓦解事件与此前观测结果结合起来估计,一个星系大约平均每五万年就会经历一次黑洞吞噬恒星的潮汐瓦解事件。 2024年2月6日 3:29 PM

封面图片

耀眼的超大质量黑洞对周围环境的影响并没有达到人们的预期

耀眼的超大质量黑洞对周围环境的影响并没有达到人们的预期 包括艾伯利家族天文学和天体物理学讲座教授、宾夕法尼亚州立大学物理学教授 W. Niel Brandt 在内的研究小组在《皇家天文学会月刊》(Monthly Notices of the Royal Astronomical Society)上发表了一篇介绍这些成果的论文。这项研究利用美国国家航空航天局钱德拉 X 射线天文台(NASA's Chandra X-ray Observatory)的数据,研究了距离地球最近的一颗类星体。这颗类星体被称为 H1821+643,距离地球约 34 亿光年,位于一个星系团中。类星体是一类罕见而极端的超大质量黑洞,它们疯狂地向内拉扯物质,产生强烈的辐射,有时还会产生强大的喷流。Brandt说:"我一直希望利用钱德拉的敏锐视力更好地研究这颗非凡的类星体。我怀疑这个类星体的"叫声"比它的"咀嚼声"更可怕也就是说,它令人印象深刻的烟火表演并不意味着它对环境也有同样深刻的影响。我很高兴我们坚定的决心最终得到了回报,证实了我的猜测!"这张图片的中心是类星体 H1821+643,这是一个快速增长的超大质量黑洞,天文学家发现,尽管它产生了强烈的辐射,并且从甚大阵列的射电数据(红色)中可以看到粒子喷流,但它的表现并不尽如人意。H1821+643 位于一个星系团的中央,周围环绕着大量炽热的气体,蓝色是钱德拉望远镜通过 X 射线探测到的。类星体周围热气的高温和高密度表明,这个黑洞对其宿主星系的影响比其他星系团中的许多同类黑洞要弱。H1821+643是星系团中距离地球最近的类星体。它距离地球 34 亿光年,在类星体的距离上,图像的宽度约为 100 万光年。图片来源:X射线NASA/CXC/Univ. of Nottingham/H.Russell et al:NSF/NRAO/VLA;图像处理:NASA/CXC/SAO/N.Wolk大多数成长中的超大质量黑洞吸积物质的速度都不如类星体快。天文学家通过观测星系团中心的黑洞,研究了这些更常见黑洞的影响。这类黑洞的定期爆发会阻止它们所蕴含的大量过热气体冷却下来,从而限制了宿主星系中恒星的形成数量,以及有多少燃料被输送到黑洞中。至于星系团中的类星体对其周围环境的影响有多大,我们就知之甚少了。领导这项新研究的英国诺丁汉大学的海伦-拉塞尔(Helen Russell)说:"我们发现,我们研究中的类星体似乎已经放弃了生长较慢的黑洞所施加的大部分控制。黑洞的胃口与其影响力并不匹配"。"为了得出这一结论,研究小组利用钱德拉望远镜对H1821+643及其宿主星系所笼罩的高温气体进行了研究。然而,由于类星体发出的X射线很亮,因此很难研究热气体发出的较弱的X射线。哈佛大学天体物理学中心和史密森尼学会的合著者保罗-努尔森说:"我们必须小心翼翼地去除X射线眩光,以揭示黑洞的影响。然后我们就可以看到,它实际上对周围环境的影响很小。"气体动力学和对未来的影响研究小组发现,星系中心黑洞附近的气体密度要比较远区域的气体密度高得多,气体温度也低得多。科学家们预计,当几乎没有能量源(通常是黑洞爆发的能量)阻止高温气体冷却并流向星系团中心时,高温气体就会有这样的表现。"与星系团中心的大多数其他黑洞相比,这个巨型黑洞产生的热量要少得多,"合著者、英国开放大学的露西-克莱斯说,"这使得高温气体能够迅速冷却下来,形成新的恒星,同时也成为黑洞的燃料源。"研究人员确定,每年相当于太阳质量约3000倍的热气体正在冷却,以至于在X射线中已经看不到了。这种快速冷却可以轻松地为宿主星系中每年观察到的120个太阳质量的新恒星的形成提供足够的物质,也可以为黑洞每年消耗的40个太阳质量的恒星提供足够的物质。研究小组还研究了类星体的辐射直接导致星团高温气体冷却的可能性。这涉及到类星体发出的光子与高温气体中的电子发生碰撞,导致光子能量增加,电子失去能量而冷却下来。研究小组的研究表明,在包含 H1821+643 的星团中很可能发生了这种冷却,但这种冷却太微弱,无法解释所看到的大量气体冷却。合著者、诺丁汉大学的托马斯-布拉本(Thomas Braben)说:"虽然这个黑洞可能因为没有向其环境中注入热量而表现不佳,但目前的状态很可能不会永远持续下去。最终,黑洞的快速燃料摄入应该会增加其喷流的功率,并强烈加热气体。届时,黑洞及其星系的增长速度应该会大幅放缓"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

距离地球仅2000光年的破纪录黑洞是如何被发现的?

距离地球仅2000光年的破纪录黑洞是如何被发现的? 天文学家发现了银河系中质量最大的恒星黑洞,这要归功于它在一颗伴星上引起的摆动运动。这幅艺术家印象图显示了这颗恒星和被称为盖亚 BH3 的黑洞围绕它们共同的质量中心运行的轨道。图片来源:ESO/L.卡尔卡达欧洲南方天文台的甚大望远镜(ESO's VLT)和其他地面天文台的数据被用来验证这个黑洞的质量,它的质量是太阳的 33 倍,令人印象深刻。恒星黑洞是由大质量恒星坍缩形成的,之前在银河系中发现的恒星黑洞的质量平均约为太阳的 10 倍。即使是银河系中已知的第二大质量恒星黑洞天鹅座 X-1,其质量也只有 21 个太阳质量,因此这次新观测到的 33 个太阳质量的恒星黑洞是非常罕见的[1]。值得注意的是,这个黑洞离我们还非常近它距离我们只有2000光年,位于天鹰座,是已知距离地球第二近的黑洞。这个黑洞被命名为盖亚 BH3 或简称 BH3,是研究小组在审查盖亚观测数据,为即将发布的数据做准备时发现的。盖亚合作小组成员、法国巴黎PSL天文台国家科学研究中心(CNRS)的天文学家帕斯夸莱-帕努佐(Pasquale Panuzzo)说:"没有人想到会发现一个潜伏在附近、至今未被发现的高质黑洞。这种发现在你的研究生涯中只有一次"。这幅艺术家的印象图将银河系中的三个恒星黑洞并排进行了比较:盖亚BH1、天鹅座X-1和盖亚BH3的质量分别是太阳的10倍、21倍和33倍。盖亚BH3是迄今为止在银河系中发现的质量最大的恒星黑洞。黑洞的半径与其质量成正比,但请注意,黑洞本身并没有被直接成像。图片来源:ESO/M.Kornmesser这些观测数据揭示了伴星的关键特性,再加上盖亚的数据,天文学家得以精确测量出BH3的质量。[2]这段视频放大了 BH3,它是迄今为止在银河系中发现的质量最大的恒星黑洞。该黑洞的发现得益于它在一颗伴星上引起的摆动,在这里可以看到,在变焦结束时,它是画面中心的一个亮点。视频末尾的插图是艺术家绘制的 BH3(红色)及其伴星(蓝色)围绕共同质心的轨道动画。资料来源:ESO/L.Calçada, N. Risinger (), DSS.音乐:Martin Stuertzer马丁-斯图尔泽天文学家已经在银河系外发现了类似的大质量黑洞(使用的是另一种探测方法),并推测它们可能是由化学成分中氢和氦以外的重元素极少的恒星坍缩形成的。这些所谓的贫金属恒星被认为在其生命周期中损失的质量较少,因此有更多的剩余物质在其死亡后产生高质黑洞。但直到现在,还没有证据表明贫金属恒星与高质黑洞有直接联系。这幅图像显示的是盖亚 BH3 周围区域的广域视图,盖亚 BH3 是银河系中质量最大的恒星黑洞。这里看不到黑洞本身,但可以看到围绕它运行的恒星就在这张照片的中心位置,这张照片是由数字化巡天 2 拍摄的。图片来源:ESO/数字化巡天 2。鸣谢:D:D. De Martin成对的恒星往往具有相似的成分,这意味着BH3的伴星拥有关于坍缩形成这个特殊黑洞的恒星的重要线索。紫外可见光谱仪的数据显示,伴星是一颗非常贫金属的恒星,这表明坍缩形成 BH3 的恒星也是贫金属的正如预测的那样。这个艺术家用太空引擎制作的动画展示了银河系中一些恒星黑洞的位置和距离(单位:光年[ly]):盖亚 BH3,一个目前发现的质量最大的恒星黑洞;天鹅座 X-1,质量次之的恒星黑洞;盖亚 BH1,距离地球最近的黑洞。在我们银河系的中心,潜藏着一个超大质量黑洞人马座 A*。请注意,由于投影效应,盖亚BH3看起来比盖亚BH1离太阳更近,但实际上前者离太阳更远。这是迄今为止发现的距离地球第二近的黑洞。图片来源:ESO/L.Calçada/Space Engine ()帕努佐领导的这项研究成果今天发表在《天文学与天体物理学》(Astronomy & Astrophysics)杂志上。论文合著者、盖亚合作小组成员、法国国家科学研究中心(CNRS)巴黎天文台科学家伊丽莎白-卡福(Elisabetta Caffau)说:"由于这一发现的独特性,我们采取了一个特殊的步骤,在即将发布盖亚数据之前根据初步数据发表了这篇论文。尽早提供数据将使其他天文学家能够立即开始研究这个黑洞,而不必等到最早计划于2025年底发布的完整数据。"对这个系统的进一步观测可以揭示更多关于它的历史和黑洞本身的信息。例如,欧洲南方天文台 VLT 干涉仪上的 GRAVITY 仪器可以帮助天文学家发现这个黑洞是否从周围环境中吸入了物质,从而更好地了解这个令人兴奋的天体。说明这并不是银河系中质量最大的黑洞这个称号属于银河系中心的超大质量黑洞人马座A*,它的质量大约是太阳的400万倍。但盖亚 BH3 是银河系中已知质量最大的黑洞,它是由恒星坍缩形成的。除了欧洲南方天文台 VLT 上的 UVES 外,这项研究还依靠了以下设备提供的数据:由比利时鲁汶大学与瑞士日内瓦大学天文台合作在西班牙拉帕尔马运行的墨卡托望远镜上的 HERMES 摄谱仪;以及上普罗旺斯天文台OSU 毕达研究所的 SOPHIE 高精度摄谱仪。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA斯皮策望远镜发现仙女座超大质量黑洞的进食习惯

NASA斯皮策望远镜发现仙女座超大质量黑洞的进食习惯 这些仙女座星系的图像使用的是美国宇航局退役的斯皮策太空望远镜的数据。上图显示了多个波长的图像,揭示了恒星、尘埃和恒星形成的区域。下图只显示了尘埃,更容易看到星系的底层结构。资料来源:NASA/JPL-Caltech在美国国家航空航天局(NASA)退役的斯皮策太空望远镜(Spitzer Space Telescope)拍摄的图像中,数千光年长的尘埃流流向仙女座星系中心的超大质量黑洞。原来,这些尘埃流可以帮助解释质量是太阳数十亿倍的黑洞是如何饱餐一顿,却又"安静"地吃东西的。当超大质量黑洞吞噬气体和尘埃时,这些物质在掉入黑洞之前会被加热,从而产生令人难以置信的光影效果有时比整个星系的恒星还要亮。当物质以不同大小的团块形式被吞噬时,黑洞的亮度就会发生波动。但是,位于银河系(地球的母星系)和仙女座(我们最近的星系邻居之一)中心的黑洞是宇宙中最安静的吞噬者之一。它们发出的微弱光线在亮度上没有明显变化,这表明它们吃的是少量但稳定的食物流,而不是大块的食物。这些食物流以螺旋的方式一点一点地接近黑洞,就像水流顺着下水道旋转一样。今年早些时候发表的一项研究将"安静的超大质量黑洞以稳定的气体流为食"这一假设应用到了仙女座星系。作者利用计算机模型模拟了仙女座超大质量黑洞附近的气体和尘埃随着时间的推移会有怎样的表现。模拟结果表明,超大质量黑洞附近可能会形成一个小的热气体盘,并不断为其提供能量。无数的气体和尘埃流可以补充和维持这个圆盘。但研究人员也发现,这些气流必须保持在一个特定的大小和流速范围内;否则,物质会以不规则的团块形式落入黑洞,造成更多的光波动。这张仙女座星系中心的特写照片是由美国宇航局退役的斯皮策太空望远镜拍摄的,上面用蓝色虚线标注了两股尘埃流流向星系中心的超大质量黑洞(用紫色圆点表示)的路径。资料来源:NASA/JPL-Caltech当作者将他们的发现与来自斯皮策和美国宇航局哈勃太空望远镜的数据进行比较时,他们发现斯皮策之前识别出的尘埃螺旋符合这些限制条件。由此,作者得出结论,这些螺旋体正在为仙女座的超大质量黑洞提供能量。加那利群岛天体物理研究所和慕尼黑大学天文台的天体物理学家阿尔穆德纳-普列托(Almudena Prieto)是今年发表的研究报告的共同作者之一。"我们有了20年前的数据,这些数据告诉了我们一些我们最初收集这些数据时没有意识到的东西。"斯皮策号于2003年发射升空,由美国宇航局喷气推进实验室(JPL)负责管理,它利用人眼看不见的红外光研究宇宙。不同的波长显示了仙女座的不同特征,包括较热的光源(如恒星)和较冷的光源(如尘埃)。通过分离这些波长并单独观察尘埃,天文学家可以看到星系的"骨架"气体凝聚和冷却的地方,有时会形成尘埃,为恒星的形成创造了条件。仙女座星系的这一景象给我们带来了一些惊喜。例如,虽然仙女座星系和银河系一样是一个螺旋星系,但它的中心是一个巨大的尘埃环,而不是环绕其中心的明显的臂。图像还显示,在环的一部分有一个二级洞,一个矮星系从那里穿过。仙女座靠近银河系,这意味着从地球上看它比其他星系更大: 用肉眼看,仙女座的宽度大约是月球宽度的六倍(约3度)。即使斯皮策望远镜的视场比哈勃望远镜更宽,它也必须拍摄 11000 张快照,才能绘制出仙女座的全貌。JPL 为位于华盛顿的美国宇航局科学任务局管理斯皮策太空望远镜任务,直到该任务于 2020 年 1 月退役。科学运作在加州理工学院的斯皮策科学中心进行。航天器的运行由位于科罗拉多州利特尔顿的洛克希德-马丁航天公司负责。数据存档在加州理工学院 IPAC 管理的红外科学档案馆。加州理工学院为美国国家航空航天局管理 JPL。编译自/scitechdaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人