天文学家发现银河血统近邻星团源自三个"家族"的共同祖先

天文学家发现银河血统近邻星团源自三个"家族"的共同祖先 英仙座阿尔法星团英仙座阿尔法星团的光学图像,来自第二次数字化巡天(DSS-II)。该星团是英仙座阿尔法星系家族中最早形成的星团之一,也是该家族的同名星团。资料来源:ESO/STSCI 数字化巡天 II科林德135星团的光学图像,来自第二次数字化巡天(DSS-II)。该星团是科林德135星族中最早形成的星团之一,也是该星族的同名星团。资料来源:ESO/STSCI 数字化巡天 II由维也纳大学领导的一个国际天文学家小组破译了年轻星团的形成历史,其中一些星团我们可以在晚上用肉眼看到。由维也纳大学的卡梅伦-斯维格姆(Cameren Swiggum)、若昂-阿尔维斯(João Alves)和威斯康星大学怀特沃特分校的罗伯特-本杰明(Robert Benjamin)领导的研究小组报告说,附近大多数年轻星团只属于三个家族,它们源自质量非常大的恒星形成区。这项研究还提供了关于超新星(大质量恒星生命末期的剧烈爆炸)对银河系等星系中巨型气体结构形成的影响的新见解。相关成果最近发表在著名的《自然》杂志上。Messier 6星团Messier 6星团的光学图像,也被称为"蝴蝶星团",来自第二次数字化巡天(DSS-II)。这个星团是Messier 6家族中最早形成的星团之一,也是该家族的同名星团。资料来源:ESO/STSCI数字化巡天II"年轻星团是探索银河系历史和结构的绝佳工具。通过研究它们在过去的运动以及它们的起源,我们还能对银河系的形成和演变有重要的了解,"这项研究的合著者、维也纳大学的若昂-阿尔维斯(João Alves)说。研究小组利用欧洲航天局(ESA)盖亚(Gaia)任务提供的精确数据和光谱观测结果,追溯了太阳周围约3500光年半径内155个年轻星团的起源。他们的分析表明,这些星团可以分为三个具有共同起源和形成条件的家族。NGC 2451A 星团:NGC 2415A星团的光学图像,来自第二次数字化巡天(DSS-II)。它是Messier 6家族的成员。资料来源:ESO/STSCI数字化巡天II阿尔维斯说:"这表明,年轻星团只源自三个非常活跃的大质量恒星形成区。这三个星族以其最著名的星团命名:Collinder 135(Cr135)、Messier 6(M6)和Alpha Persei(αPer)。""这些发现让我们更清楚地了解银河系邻域中年轻的星团是如何相互联系的,就像一个家族的成员或'血缘',"领衔作者、维也纳大学博士生卡梅伦-斯维格姆(Cameren Swiggum)说。"通过研究这些星团的三维运动和过去的位置,我们可以确定它们的共同起源,并找到银河系中这些各自星团中的第一批恒星在4000万年前形成的区域"。IC 2602 星团IC 2602 星团(又称"南昴宿星团")的光学图像,来自第二次数字化巡天(DSS-II)。它是英仙座阿尔法星家族的成员。资料来源:ESO/STSCI Digitized Sky Survey II研究发现,在这三个星团家族中一定发生过 200 多次超新星爆炸,向周围环境释放了巨大的能量。作者的结论是,这些能量很可能对当地银河系的气体分布产生了重大影响。斯威格姆解释说:"这可以解释超级气泡的形成,即在Cr135家族周围形成的直径为3000光年的巨大气体和尘埃气泡。"IC 2391 星团IC 2391星团的光学图像,也被称为"Omicron Velorum星团",来自第二次数字化巡天(DSS-II)。它是Messier 6家族的成员。资料来源:ESO/STSCI Digitized Sky Survey II我们的太阳系也位于这样一个气泡之中,即所谓的"本地气泡"(Local Bubble),其中充满了非常稀薄和炽热的气体。"斯维格姆补充说:"本地气泡很可能也与三个星团家族之一的历史有关。而且它很可能在地球上留下了痕迹,地壳中铁同位素(60Fe)的测量结果就表明了这一点。"NGC 2547 星团:NGC 2547 星团的光学图像,来自第二次数字化巡天(DSS-II)。它是科林德135星族的成员。图片来源:ESO/STSCI 数字化巡天 II若昂-阿尔维斯说:"我们实际上可以把天空变成一台时间机器,让我们追溯银河系的历史。通过破译星团的谱系,我们也能更多地了解我们自己的银河系祖先。未来,若昂-阿尔维斯的团队计划更精确地研究太阳系是否以及如何与银河系中的星际物质相互作用。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

天文学家发现位于银河系中心区域的三颗恒星异常年轻

天文学家发现位于银河系中心区域的三颗恒星异常年轻 这张照片是用欧洲南方天文台位于智利的甚大望远镜拍摄的,显示了银河系最内层的高分辨率景象。在新的研究中,研究人员对此处显示的密集核星团进行了详细的研究。图片来源:ESO这项研究发表在《天体物理学杂志通讯》上,研究对象是位于构成银河系中心的核星团中的一组恒星。研究涉及三颗难以研究的恒星,因为它们距离太阳系非常遥远,隐藏在巨大的尘埃和气体云后面,遮挡了光线。事实上,该区域还布满了恒星,这使得分辨单个恒星变得非常复杂。在之前的一项研究中,研究人员提出了一个假设,即银河系中部的这些特定恒星可能异常年轻。验证银河系核心的年轻恒星"我们现在可以证实这一点。在我们的研究中,我们已经能够确定其中三颗恒星相对年轻,至少在天文学家看来是如此,年龄在 1 亿年到 10 亿年左右。"隆德大学天文学研究员丽贝卡-福斯伯格说:"这可以与太阳相比,太阳的年龄为 46 亿年。"核星团一直被视为银河系中非常古老的部分,这一点非常正确。但研究人员新发现的这些年轻恒星表明,在银河系这个古老的组成部分中,恒星的形成也非常活跃。然而,对距离地球 2.5 万光年的恒星进行测年并不是一件急于求成的事情。研究人员使用了来自夏威夷凯克 II 望远镜的高分辨率数据,该望远镜是世界上最大的望远镜之一,镜面直径达 10 米。为了进一步验证,他们还测量了恒星中铁这种重元素的含量。这种元素对于追踪银河系的发展非常重要,因为天文学家关于恒星形成和星系发展的理论表明,年轻的恒星含有更多的重元素,因为随着时间的推移,重元素在宇宙中形成的程度越来越高。为了确定铁的含量,天文学家用红外光观测了恒星的光谱,与光学光相比,红外光的光谱部分更容易透过银河系尘埃密集的部分。结果显示,铁的含量差异很大,这让研究人员感到惊讶。了解银河系和宇宙的意义"铁含量的分布非常广泛,这可能表明银河系的最内层是非常不均匀的,也就是不混合的。"隆德大学天文学研究员布莱恩-托尔斯布罗(Brian Thorsbro)说:"这是我们始料未及的,它不仅说明了银河系中心的面貌,也说明了早期宇宙的面貌。"这项研究为我们了解早期宇宙和银河系中心的运作提供了重要启示。研究结果还可能有助于启发我们今后继续探索银河系的中心,以及进一步开发星系和恒星形成的模型和模拟。"我个人认为,我们现在可以如此详细地研究银河系的最中心,这是非常令人兴奋的。对于我们所在的银河系圆盘的观测来说,这些类型的测量已经成为标准,但对于银河系中更遥远、更奇特的部分来说,却是遥不可及的目标。"Rebecca Forsberg总结说:"我们可以从这些研究中了解到很多关于我们的银河系是如何形成和发展的信息。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

打破银河系的信仰:天文学家在银河系中发现令人惊讶的磁场结构

打破银河系的信仰:天文学家在银河系中发现令人惊讶的磁场结构 有些人可能会对磁场的存在感到惊讶,因为磁场的规模比地球还大。我们日常接触到的磁场大多是把东西粘在冰箱上,或者用指南针指北。后者显示了我们的星球所产生的磁场的存在。我们的太阳也会产生巨大的磁场,这会影响到太阳耀斑等现象。但是,横跨整个银河系的磁场几乎大得难以理解,但它们很可能在恒星和行星的形成过程中发挥了作用。地球科学与天文学系助理教授土井康夫(Yasuo Doi)说:"到目前为止,对银河系内部磁场的所有观测都是在一个非常有限的模型内进行的,这个模型是均匀一致的,并且在很大程度上与银河系本身的圆盘形状相匹配。广岛大学的望远镜设备能够测量偏振光,帮助我们确定磁场特征,而欧洲航天局于2013年发射的盖亚卫星专门测量恒星的距离,这在一定程度上帮助我们建立了一个具有更精细三维细节的更好的模型。聚焦于一个特定区域,即我们螺旋星系的人马座臂(我们位于邻近的猎户座臂),发现那里的主导磁场明显偏离星系平面。"叠加在这张银河系人马座臂图像上的白线显示了光的偏振或方向。这与当地磁场线的方向相关。结合这些信息,就能绘制出银河系该臂的详细磁场图。资料来源:2023 Doi et al.以前的模型和观测只能想象银河系中存在一个平滑且基本均匀的磁场;而新的数据显示,虽然旋臂中的磁场线在大尺度上与银河系大致对齐,但在小尺度上,由于超新星和恒星风等各种天体物理现象的影响,这些磁场线实际上分散在不同的距离上。银河系的磁场也非常弱,比地球自身的磁场弱约 10 万倍。尽管如此,在很长一段时间内,星际空间中的气体和尘埃都会被这些磁场加速,这就解释了为什么会出现一些单靠引力无法解释的恒星苗圃恒星形成区。这一发现意味着进一步绘制银河系内的磁场图有助于更好地解释银河系和其他星系的性质和演变。Doi 说:"我个人对恒星形成的基础过程非常感兴趣,这一过程对于创造生命(包括我们自己)至关重要。目标是进一步观测并建立更好的银河磁场结构模型。这项工作旨在通过观测深入了解银河系内助长活跃恒星形成的气体积累及其历史发展"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天文学家首次探测到银河系以外大质量恒星的磁性

天文学家首次探测到银河系以外大质量恒星的磁性 新发现揭示了磁性对恒星演化以及中子星和黑洞形成的影响。先进的分光测向技术的使用对于克服过去的观测难题至关重要。值得注意的是,磁性被认为是大质量恒星演化过程中的一个关键组成部分,对它们的最终命运有着深远的影响。最初质量超过 8 个太阳质量的大质量恒星在演化结束时会留下中子星和黑洞。引力波天文台已经观测到这种紧凑残余系统的壮观合并事件。此外,理论研究提出了大质量恒星爆炸的磁机制,与伽马射线暴、X 射线闪光和超新星有关。这项研究的第一作者、波茨坦莱布尼兹天体物理研究所(AIP)的斯韦特拉娜-胡布里奇(Swetlana Hubrig)博士说:"对具有年轻恒星群的星系中的大质量恒星的磁场进行研究,为了解磁场在早期宇宙恒星形成过程中的作用提供了重要信息。"距离地球约 20 万光年的南半球星空中,小麦哲伦云中最巨大的恒星形成区 NGC346,位于巨嘴鸟座。资料来源:NASA、ESA、安迪-詹姆斯(STScI)测量恒星磁性的挑战恒星磁场是利用光谱极化测量法测量的。为此,要记录圆偏振星光,并研究光谱线的最小变化。不过,为了达到必要的偏振测量精度,这种方法需要高质量的数据。"这种方法对光子极为渴求。这是一个特殊的挑战,因为在我们的邻近星系大麦哲伦云和小麦哲伦云中观测时,即使是最亮的大质量恒星(其质量超过 8 个太阳质量)也是相对弱光的,"来自 AIP 的 Silva Järvinen 博士解释道。由于这些条件,传统的高分辨率分光测色计和较小的望远镜都不适合进行此类研究。因此,我们使用了安装在欧洲南方天文台(ESO)甚大望远镜(VLT)四个 8 米望远镜之一上的低分辨率分光测极计 FORS2。检测领域的挑战与突破以前探测银河系外大质量恒星磁场的尝试并不成功。这些测量很复杂,取决于几个因素。使用圆偏振测量到的磁场被称为纵向磁场,它只对应于指向观察者方向的磁场分量。它类似于灯塔发出的光,当光束照向观察者时很容易看到。由于大质量恒星的磁场结构通常具有轴线倾斜于自转轴的全局偶极子特征,因此当观测者直视自转恒星的磁赤道时,纵向磁场强度在自转阶段可能为零。偏振信号的可探测性还取决于用于研究偏振的光谱特征的数量。最好能观测到更宽的光谱区域和更多的光谱特征。此外,较长的曝光时间对于记录信噪比足够高的偏振光谱至关重要。最新观察和研究结果考虑到这些重要因素,研究小组对麦哲伦云中的五颗大质量恒星进行了光谱测量观测。在位于小麦哲伦星云中最大规模恒星形成区 NGC346 核心内的两颗推测为单星的恒星(其光谱特征是我们银河系中典型的磁性大质量恒星)和一个积极相互作用的大质量双星系统(Cl*NGC346 SSN7)中,他们成功地探测到了千高斯数量级的磁场。在太阳表面,只有在小的高磁化区域太阳黑子才能探测到如此强大的磁场。据报道,麦哲伦云中的磁场探测首次表明,在具有年轻恒星群的星系中,大质量恒星的形成过程与我们的银河系类似。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天文学家揭示了银河系中心黑洞的第一张照片

天文学家揭示了银河系中心黑洞的第一张照片 5月12日,在世界各地同时举行的新闻发布会上,天文学家向人们展示了位于银河系中心的超大质量黑洞的首张照片。 这一结果提供了压倒性的证据,证明该物体确实是一个黑洞,并为理解星系中心的这些“巨兽”如何运作提供了有价值的线索。 该图像由一个名为「事件视界望远镜 (EHT) 合作组织」的全球研究团队,通过分布在全球的射电望远镜组网“拍摄”而成。

封面图片

翘速前进:天文学家解释银河系中心黑洞弯曲时空的方式

翘速前进:天文学家解释银河系中心黑洞弯曲时空的方式 这幅艺术家绘制的插图显示了银河系中心超大质量黑洞和周围物质的横截面。中心的黑色球体代表黑洞的事件穹界,也就是不归点,任何东西,甚至光,都无法从这里逃逸。从侧面看旋转的黑洞,如图所示,周围的时空形状就像一个美式足球。两侧的黄橙色物质代表围绕黑洞旋转的气体。这些物质不可避免地向黑洞坠落,一旦落入足球形状的内部,就会穿过事件穹界。因此,足球形状内、事件视界外的区域被描绘成一个空腔。蓝色圆球表示从旋转黑洞两极射出的喷流。图片来源:NASA/CXC/M.Weiss天文学家称这个巨大的黑洞为人马座 A*(简称 Sgr A*),它距离地球约 26000 光年,位于银河系的中心。黑洞有两个基本特性:质量(重量)和自旋(旋转速度)。确定这两个值中的任何一个,都能让科学家们对任何黑洞及其行为方式了如指掌。自旋测量技术一个研究小组采用了一种新方法,利用 X 射线和无线电数据,根据物质流向和流出黑洞的方式来确定 Sgr A* 的旋转速度。他们发现Sgr A*的旋转角速度即每秒的旋转圈数约为最大可能值的60%,而这是由于物质的运动速度无法超过光速而设定的极限。过去,不同的天文学家使用不同的技术对Sgr A*的旋转速度进行了其他一些估计,结果从Sgr A*完全不旋转到几乎以最大速度旋转不等。新研究的第一作者、宾夕法尼亚州立大学的露丝-戴利(Ruth Daly)说:"我们的工作可能有助于解决银河系超大质量黑洞的旋转速度问题。结果表明,Sgr A* 的旋转速度非常快,这很有趣,而且影响深远。"人马座 A* 及其周围区域的钱德拉 X 射线图像。资料来源:NASA/CXC/威斯康星大学/Y.Bai, et al.快速旋转的影响旋转的黑洞在旋转时会拉动"时空"(时间和三维空间的组合)和附近的物质。旋转黑洞周围的时空也会被压扁。从顶部俯视黑洞,沿着黑洞产生的任何喷流桶,时空都是一个圆形。然而,从侧面看旋转的黑洞,时空的形状就像一个足球。旋转速度越快,足球就越扁平。黑洞的自旋可以作为一种重要的能量来源。旋转的超大质量黑洞在提取其自旋能量时会产生准直外流,即狭窄的物质束,如喷流,这就要求黑洞附近至少有一些物质。由于 Sgr A* 周围的燃料有限,这个黑洞近千年来一直相对安静,喷流也相对较弱。然而,这项研究表明,如果斯格拉A*附近的物质数量增加,这种情况可能会改变。人马座 A* 的未来"旋转的黑洞就像发射台上的火箭,"来自加拿大温尼伯马尼托巴大学的合著者宾尼-塞巴斯蒂安说。"一旦物质足够接近,就好像有人给火箭加满了燃料,然后按下了'发射'按钮"。这意味着,将来如果黑洞附近物质的性质和磁场强度发生变化,黑洞自旋的巨大能量的一部分可能会驱动更强大的外流。这种源物质可能来自气体,也可能来自被黑洞引力撕裂的恒星残骸,如果该恒星游荡得离斯格拉A*太近的话。来自密歇根州立大学的合著者梅根-多纳休(Megan Donahue)说:"一个星系旋转的中心黑洞所产生的喷流会深刻影响整个星系的气体供应,从而影响恒星形成的速度,甚至影响恒星是否能够形成。在银河系黑洞周围的X射线和伽马射线中看到的'费米气泡'表明,黑洞在过去可能是活跃的。测量我们黑洞的自旋是对这种情况的重要检验。"为了确定 Sgr A* 的自旋,作者使用了一种基于经验的理论方法,即"外流法",该方法详细说明了黑洞的自旋与其质量、黑洞附近物质的特性以及外流特性之间的关系。准直外流产生无线电波,而黑洞周围的气体盘则产生 X 射线辐射。利用这种方法,研究人员将钱德拉和 VLA 的数据与其他望远镜对黑洞质量的独立估计结合起来,对黑洞的自旋进行了约束。合著者之一、加拿大蒙特利尔麦吉尔大学的 Anan Lu 说:"我们对 Sgr A* 有特殊的看法,因为它是离我们最近的超大质量黑洞。虽然它现在很安静,但我们的工作表明,未来它将对周围的物质产生无比强大的冲击力。这可能发生在一千年或一百万年后,也可能发生在我们有生之年。"银河系中心的超大质量黑洞正在飞速旋转,以至于它把周围的时空扭曲成一个看起来像美式足球的形状。这一结果是利用美国宇航局钱德拉 X 射线天文台(太空中的 X 射线望远镜)和美国国家科学基金会甚大阵列(位于新墨西哥州的射电望远镜阵列)的数据得出的。资料来源:NASA/CXC/A.霍巴特描述这些结果的论文由露丝-戴利(Ruth Daly)领衔撰写,发表在 2024 年 1 月出版的《英国皇家天文学会月刊》(Monthly Notices of the Royal Astronomical Society)上。 ... PC版: 手机版:

封面图片

天文学家合成走鸡星云新图片,高达 15 亿像素

天文学家合成走鸡星云新图片,高达 15 亿像素 欧洲南方天文台近日借助超大巡天望远镜(VST),合成了走鸡星云(IC 2944)的最新照片,像素高达 15 亿。 IC 2944,也称为走鸡星云或半人马座 λ 星云,是在半人马座 λ 星附近的一个由疏散星团与发射星云组成星云,包括一大片氢气云及照耀它的一个疏散星团,云团中心有一个酷似鸡头的形状,因此它亦昵称走鸡星云。特征是拥有包克球,并且是恒星形成的活跃区域,距离地球 6523 光年。 这张照片其实是由数百张照片合成的,最终全景图像素高达 15 亿,这里下载: 3.9 GB 733.7 MB 40K 3.4 GB 25K 1.2 GB 10K 162.7 MB 4K 27.5 MB 6.7 MB 498.8 KB来源, 频道:@kejiqu 群组:@kejiquchat

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人